Licenciado

Disponível somente no TrabalhosFeitos
  • Páginas : 26 (6334 palavras )
  • Download(s) : 0
  • Publicado : 1 de novembro de 2012
Ler documento completo
Amostra do texto
Cálculo aplicado á topografia

1 - Angulos.
Vamos estudar 3 unidades de medida de ângulos usadas correntemente: Graus: em que o angulo giro (volta completa) tem 360º Grados: em que o angulo giro tem 400g Radianos: em que o angulo giro tem 2π rad (π tem o valor de 3,141592654) Para converter um angulo de graus em grados ou em radianos usa-se uma proporção geométrica. Um angulo giro (voltacompleta) tem 360º ou 400g ou 2π rad, então um angulo de 45º corresponde a: 360º – 400g 45º – αg ou 360º - 2π rad 45º – α rad α rad = 45º x 2π rad / 360º = π/4 rad αg = 45º * 400g / 360º = 50g

Os angulos medidos em graus apresentam-se vulgarmente na forma sexagesimal, por exemplo: 25º 15' 18” (vinte e cinco graus, quinze minutos e dezoito segundos). Para possibilitar a adição e subtração, torna-semais facil converter para o sistema decimal (ou centesimal, considerando minutos e segundos centesimais). 1º) Converter os segundos sexagésimais em centésimais 15' 18” = 15'+ 0,30' (18*100/60) = 15,30' 2º) Converter os minutos sexagésimais em centésimais 25º 15,30' = 25º + 0,2550º (15.3*100/60) = 25,2550º Conversão directa de graus sexagésimais para grados no sistema centesimal 1º = 1,11111 grad 1'= 0,01852 grad 1'' = 0,00031 grad

Aplicando: 25º 15' 18'' = (25*1,11111 + 15*0,01852 + 18*0,00031)grad = = (27,77775 + 0,27780 + 0,00558) grad = 28,06113 grad No calculo matematico, o sentido habitualmente convencionado como positivo para a progressão dos ângulos é o anti-horario com a origem (0) sobre o eixo xx´. calculo matematico y x topografia y x

No entanto, em topografia, utiliza-se oconceito de rumo, em que o ângulo é medido no sentido horario e com origem na direção sul-norte (eixo yy´).

Cálculo aplicado á topografia – apoio ás aulas Mário Valente

2 - Circulo trigonométrico e funções trigonométricas.
Nesta fase do modulo vamos estudar o circulo trigonométrico. O objectivo é conhecer as funções base da trigonometria, seno, co-seno e tangente (e co-tangente), saberrelacionar o sinal da função trigonométrica com o quadrante e quais os seus limites. Por defenição as funções trigonométricas são: seno de um ângulo = cateto oposto / hipotenusa co-seno de um ângulo = cateto adjacente / hipotenusa tangente de um ângulo = cateto oposto / cateto adjacente = seno / coseno co-tangente de um ângulo = cateto adjacente / cateto oposto = 1 / tangente Circulo trigonométrico.O circulo trigonométrico destina-se ao estudo das funções trigonométricas base, é um circulo com raio = 1 e cujo centro está colocado na origem de um referêncial ortonormado tal como apresentado na figura seguinte:

Se considerarmos dois pontos A e B colocados sobre esse circulo e fizermos passar por esses dois pontos e pelo centro do referêncial dois segmentos de recta OA e OB, defenimos umângulo formado por esses dois segmentos de recta:

Cálculo aplicado á topografia – apoio ás aulas Mário Valente

Tal como foi visto anteriormente, esse ângulo será positivo se for medido no sentido contrario ao dos ponteiros de um relogio e negativo se for em sentido identico ao dos ponteiros do relogio. Sendo P a intersecção do circulo trigonométrico com o lado que limita o ângulo, arepresentação grafica das funções seno(α), co-seno(α), tangente(α) e co-tangente(α) será a seguinte:

Cálculo aplicado á topografia – apoio ás aulas Mário Valente

Ao acrescentar dois eixos auxiliares, um vertical (eixo das tangentes) e outro horizontal (eixo das co-tangentes), tangentes ao circulo na intersecção deste com os eixos do referêncial, tal como indicado na figura seguinte, podemos obter ovalor das funções trigonométricas sem necessidade de desenhar a recta tangente ao circulo em P, basta prolongar o segmento até intersectar os referidos eixos.

As funções trigonométricas assumem então o valor seno(α) = OB co-seno(α) = OA tangente(α) = EC co-tangente(α) = FD
Nota: Este valor das funções trigonométricas obtido graficamente é tão rigoroso quanto for a determinação gráfica da sua...
tracking img