Matrizes

Disponível somente no TrabalhosFeitos
  • Páginas : 5 (1208 palavras )
  • Download(s) : 0
  • Publicado : 18 de novembro de 2011
Ler documento completo
Amostra do texto
EQUAÇÃO LINEAR Definição ? FORMA DA EQUAÇÃO LINEAR

a1x1 +a2x2 +a3x3 + a4x4.......anxn = b

onde x1 , x2 , x3 ,....., xn são variáveis ; e a1 , a2 .....an são os coeficientes da equação , e o b é o termo idependente.

RESOLUÇÃO DA EQUAÇÃO LINEAR

Para toda variável deve existir uma raiz que solucione a equação, sendo assim :

Para todo x existe uma raiz . Como assim ? Se x é uma únicaincógnita porque existe uma raíz para cada valor de x !!!!? É devido a identificação do x : x1, x2 x3 Que não significam necessariamente uma mesma incógnita e sim x1 pode ser y e x2 podendo ser z e assim é que se explica o fato de usar–se uma mesma letra para diferentes valores. Blza galera!!!!

SISTEMAS DE EQUAÇÕES LINEARES Um conjunto de equações lineares é chamada de: Sistemas Lineares

a11x1 + a12 x2 ....+a1n xn = b1 a21 x1 + a22 x2 ....+a2n xn = b2 a31 x1 + a32 x2 ....+a3n xn = b3 : : am1 x1 + am2 x2 ....+amn xn = bm

onde : amn significam: a = coeficiente das variáveis m= linhas n= colunas

CLASSIFICAÇÕES Existem algumas classificações quanto a possibilidade de solução;  SISTEMA COMPATÍVEL É quando admite solução ou seja, quando existem raízes . DETERMINADO É um sistemacompatível e determinado quando admite uma única solução Exemplo

3x + 8y = 25 9x + 4y = 35

É compatível e determinado pois existem raízes Para x =3 Para y = 2

INDETERMINADO É um sistema compatível e indeterminado quando admitem-se infinitas raízes

4x + 2y =100 8x + 4y =200

Y X 

0 25

2 24

4 23

6 22

8 21

... ....

SISTEMA INCOMPATÍVEL Um sistema é incompatível quandonão admite solução

Exemplo

8x + 9y = 12 8x + 9y = 29

É incompatível, pois o sistema não pode apresentar dois termos independentes para uma mesma expressão sendo assim como os valores de x e y seriam iguais em ambas a expressões, como pode haver respostas diferentes. Se afirmo que:

1 homem + 1 mulher =1 ser humano

1 homem + 1mulher = 1 coelho

Que viajem !!!!

SISTEMASEQUIVALENTES É quando dois sistemas de equações admitem a mesma solução ou seja Raízes iguais para sistemas diferentes porém equivalentes. Exemplo :

8x + 4y = 28 25x - 5y = 35

E

2x + y = 7 5x - y = 7

São equivalentes, pois as raízes em ambos sistemas são : Para x = 2 Para y = 3

Passo 4 ? Etapa 4

MODELANDO A EQUAÇÃO SEGUNDO KIRCHHOFF I1 = 10 v – 4.i1 .i2 - 2.i1 .i3 – 2 .i1 I2 = - 3 i2 –1. i2 – 2 .i2 . i3 – 4 i2 . i1 I3 = 4 v – 3 . i3 – 3 .i3 – 2 . i1 . i3 – 2 . i2 . i3 I1 = 10v – 8.i1 – 4 . i2 – 2 . i3 I2 = - 4. i1 - 10 i2 – 2 .i3 I3 = 4v – 2 . i1 – 2 . i2 – 10 . i3

EM KIRCHOFF DIZ QUE A SOMA ALGEBRICA DA TENSÕES EM UMA MALHA FECHADA É IGUAL A ZERO;

SENDO ASSIM: I1 = I2 = I3 = 10v – 8.i1 – 4 . i2 – 2 . i3 = 0 - 4. i1 - 10 i2 – 2 .i3 =0 4v – 2 . i1 – 2 . i2 – 10 . i3 =0-8i1 -4i2 -2i3 -4i1 - 10i2 -2i3

= -10v = 0v

-2i1 - 2i2 -10i3 = -4v

Matriz dos coeficientes das variáveis:

-8 -4 -2

-4 - 10 - 2

-2 -2 -1

Matriz ampliada do sistema:

-8i1 -4i1 -2i1

- 4i2 - 2i3 -10v -10i2 - 2i3 - 2i2 -10i3 0v -4v

ETAPA 5 PASSO1 A regra de Cramer diz : O quociente, entre determinante das variáveis obtidos pela substituição da coluna da variável que sequer obter pela variável independente dividido pelo determinante da matriz incompleta, é a raiz do sistema. Sendo assim : Dx1/D = x1 Dx2/D = x2 Dx3/D = x3

No exercício em questão as incógnitas x1,x2,x3 serão substituídas por i1,i2,i3 para facilitar o entendimento.

PASSO 2 PARA QUE HAJA APENAS UMA ÚNICA SOLUÇÃO PARA O SISTEMA É NESCESSÁRIO QUE O DETERMINANTE SEJA D =[ 0 ]

PASSO 3 CÁLCULO DAMATRIZ INCOMPLETA:

SENDO A MATRIZ INCOMPLETA DO SISTEMA

-8 A= -4 -2

-4 - 10 - 2

-2 -2 -1 B=

-10 0 -4

Onde : A = Matriz incompleta B = Variáveis independentes

-8 D= -4 -2

-4 - 10 - 2

-2 -2 -1 D = - 600

-10 Di1= 0 -4

-4 - 10 - 2

-2 -2 -1 Di1 = - 912

-8 Di2= -4 -2

-10 0 -4

-2 -2 -1 Di2 = 392

-8 Di3= -4 -2

-4 - 10 - 2

-10 0 -4 Di3 = -136

As...
tracking img