Sistemas lineares

Disponível somente no TrabalhosFeitos
  • Páginas : 50 (12371 palavras )
  • Download(s) : 0
  • Publicado : 19 de dezembro de 2012
Ler documento completo
Amostra do texto
Œim ˜ q }i i o g t š mk tmimw  o }i o€ ß ¸ Ý » Å ¹ÞÁ¼Á Ý Å { }  } ‚ q }i o g t ´ o n { w ok tm @@h¤su{pˆ‰8skvs†utg Iˆ@vx—ˆp0°Pp80ÀÇT°¤¤p0ÀÇàphFxFs{8‘—@u€vs“—vpIˆi £ˆsxp—ˆ‘ji‘—"‘0°Pp80ÀÇT°¤¤ppp¤I†p@F¡šˆpjo¤‰ˆ@††F†88“F‘‰8Fh@ui@pu‡ˆ„FT8¤y8p@ˆ‘uiˆy“ mw  o o nmk gi } mi ß ¸ Ý » Å ¹ÞÁ¼Á Ý } n }€ i } … o€ gii q€ wmi nm … }    m ‡ o {i w }   gm Ók o  n }€ i o nmk gi i Œ n{ n }€ }‚ q }i o n { m … g€ tzi {o o } … to gwmk€ owo€ i q qowo  i okmw i o { … n ²v“p¤px@su{pˆT—v4v“jo¤s@‘Fx—~†Fx@u ˆ¤pvx@h@pjoumxvxFpˆ8s†•@m mk gi t }€ m { — mi£m ”m€wm  ÜÛ ow { Š Ú o gwk’ n }m Š m q ƒ t o o } … t o q omw g }  qm Ók o  n }€ g ’ o nmk gi mk lji‘Fp¤—vIp‘¤¤0@F¦°CµvvpsŸš³@u€ˆT88“ˆuiugxFx&&†Fx@u ugx@ui8F¨@pu‡ˆ„FT8¤sutp&p@ˆ‘uiˆ—ˆ‘i œ
x1 + x 2 = 0 x1 + x 2 = 1™ g { Šmi o o nmk gi } wo€ gii Ù Ð Í Ì Ë Ê Cswv8ˆpT—@ˆ‘uiˆÒpFsšˆˆ8uoq ¢¦¾ÏÎhfÉ È Œ}mtzŠ} n} Fv@ppp8v‹ m … …o no ‹€ n’ ” no o nmk g mk vØ}†8ppsvµ’×0~xvk—ljiˆiցli œ Œ ¦ q g gwk ‚ q}i o i } tm n qm  m g n … o g} puohu‡ˆ3}psu{pˆÕIvpÔs}@Fp¡kp†8¢jip0 qm Óko n }€ o nmk i n { ’ i q { t ‚i imk tm tm m g i } wmk i m … t } } gk mkim … w om q o nmk gi wm { q o@pu‡ˆxspp¤R—@ˆ‘uigˆ¢v—#@8u}vhR}x~CˆIv…s0†…Fst~8pnˆ@ˆ"I}—†s8ΏFFuˆÒˆ‘@†~p@vutugR—ˆ‘ji‘y@vIu—ps{ Ñ ŒFˆ@R“uigpspuŠyIˆImp@sm@m †“8ˆp‡Vvc’ }wm  o o { g i }k t n q m … w }km n { m…t} †Fp¨ w o q o nmk gi } o§m Ð Í Ì Ë Ê p@mvutsgp@ˆ‘uiˆµ‘lhf ¦¾ÏÎhfÉ È ŒFxFs{8‘poTIˆ@wvx—psyxCmvstugT—nˆ‘ji‘—}p†sposI"4s{80ÏP¿À(½„sº‰xv¶0ÀÇÆ@4hsx@su{pˆ~I@‘Cˆvpo }‚ q }i ok tmim o } ‚ t wo q o mk gi } … t { — ’ m — ÂÁ ¼» ¹¸ Å nm m  }‚q }i ok tmimw  } to { — ÂÁ » º ¹¸¶ m im ˜ }i m … }wm ´ t } }k to — i } o€ gii € wm n … imwom q io nmk gi i †…FxsIÄÏ„À¿¾½¼xvr„v·n~@h¤su{qpˆc†µˆ@TnsI³xo³8ps{I48†…8Fsšˆˆ8uoq“ˆi¢m††}0yCˆp@vutsg~p—ljiˆ~“ • d ™ ¬ ± ¯® ­ ­ ¬ª yey²°#¦y¤«© ¨ m … } …o no ‹€ v†p—xFvB ¦ Œ o g ž gk oi o§m vv¡k@Ÿmljiˆxˆp‘lˆi m … o q o { g o m { — qok  }‚ q }i w }km †8vu…pspuŠTyvIfxv8Fx@ss{8‘y8ˆ¤8‡ w }km ‡ n {w owk t }€ tm mi£m ‡m … w om q o nmk gi n { w o t g€ q }i ow o p¤8¥syxvˆIps—ˆ¤¤p@†E@p@vutugR—ˆ‘ji‘¢vypspu}¤Fs{8‘RvxE
a11  a21  A=  an1  a12 a22  a1n a2n     . . . ann ... ...   b1  b2    b=    bn Ax = b Ax = [0]n×1 x = [0 0 · · · 0] [0]n×1 x = [x1 x2 · · · xn ] n

w}km‡ } imk t g€ šm }€ i } … gwko n o p¤p&T’ CˆIum¤Fh¤"8†pu ˆ„—&T’
b

m…t} vspf

Œio g t Š›€g i o … w}km‡ } m imk tm … tm m … g i } nwmk i } @pv¡kv8psst8vyp¤p—"’ y@I†s@F@†sute8pˆ@ˆeI†… } n}€ } gw€im wmi m … }  q g gwko n o nw ž o t m { pp¤&ˆskˆˆC"ˆpvh0¨xjo¤j€ˆ„—¢ppŸ}csTvI—
x     

™io gtŠ›€ 8skvp8¤sutg p¤yCˆp@vutugCh¤pF8Cm syp@vutug“—@ˆ‘uiˆvn œ n}€ imwom q im ˜o { — ƒ ‹ wom q o nmk gi n { Œ mk tm … tm m … g } nwmk } m i o g tŠ ›€ g io }‚ imk t g€ šm }€ i } }‚i8ˆI†F0†sutppˆ@ˆT4’ e8skvp8¤sutppxi CˆIum¤0¤h¤yI“pˆs n}€ m…t ps †s8} ™ gk } imw m q i ˜o { m n} no o ”ow imwom q i o nmk gi i F}FuˆT†…yCˆpo@vutugCmh¤pF8—C–p€•xFs‹qpsxvˆk@xCvutsg8p@ˆ‘uiˆy“ Œi gwk m i } {€ g€ … m ƒ to o i } … Šmw nm mk tm n { n}€ }‚i i q @8}¤j€ˆ¤u’qIˆskgv¤vuw¤4m†4‘jiugqxspTFtI†poIvp"ˆI@Ts~pTpˆyCsm@mFs}qsT@m†¤mr8}¨eŒsuogxoF‹vt8Švm“m†…‰ipCmˆpƒyipi@pu‡†…Y—o@u€„vvpx@p€jugvx~mppv@m——v{|nky@xCvutsgrp—ljihf n Ž w w m t o w o wm g nm gkƒw }‚o q o nw} t o n z imwom q io nmk g • d ™ ˜ – •”’ ‘ ye&¢—¨¦“0 ‰ qfBF1Bu ¨#p1f#y0EvpffsfCphf¦d ‡ ˆ ‡ † q ƒ …t „ ƒ ‚ €t x w ut r r r q qi g e e b a A ` U X Q U S Q c"¢WYTWVTR$ DH'9 G 2 H7 G 5D 597 A ' %7 6 % 2 ') % P0C¨87 ¢I¨¨FEC8B3@(98¨¨(54310('&$ £ § ! § ¡  £  © § ¥ £¡ #" ¨¦¤¢ 

ai i = 1, 2, . . . ,n n a 1 x1 + a 2 x2 + . . . + a n xn = b xi n b

  a11 x1 + a12 x2 + . . . + a1n xn = b1    a21 x1 + a22 x2 + . . . + a2n xn = b2 

an1 x1 + an2 x2 + . . . + ann xn = bn

Ax = b

A

 x1  x2    x=    xn 

ŒŒŒ

ŒŒŒ

ŒŒŒ

ŒŒŒ

ŒŒŒ

an2

ŒŒŒ

ŒŒŒ

Œ ÅÞ r Þ Â qp Å ’ nmk gi °Þ„¸ °Á¤sÀÇÅ4x»s†©Ç„» °(Þ¼ppop@ˆ‘iuˆ—}† m { qok...
tracking img