# Respostas do capitulo 3 razavi

Disponível somente no TrabalhosFeitos
• Páginas : 15 (3729 palavras )
• Publicado : 15 de março de 2013

Amostra do texto
3.1 (a)
IX =

VX
R1

0

VX < 0
VX > 0

IX
VX (V)

Slope = 1/R1

3.2
IX =

VX
R1

0

VX < 0
VX > 0

Plotting IX (t), we have

0

0

−V0 /R1

−π/ω

0
t

π/ω

−V0

VX (t) (Dotted)

IX (t) for VB = 1 V (Solid)

V0

3.3
IX =

0
VX −VB
R1

VX < VB
VX > VB

Plotting IX vs. VX for VB = −1 V and VB = 1 V, we get:

IX
VB = −1 V
VB = 1 VSlope = 1/R1

−1

Slope = 1/R1

1
VX (V)

3.4
IX =

0
VX −VB
R1

VX < VB
VX > VB

Let’s assume V0 > 1 V. Plotting IX (t) for VB = −1 V, we get

(V0 − VB )/R1

0

0

VB

−π/ω
Plotting IX (t) for VB = 1 V, we get

0
t

π/ω

−V0

VX (t) (Dotted)

IX (t) for VB = −1 V (Solid)

V0

IX (t) for VB = 1 V (Solid)
(V0 − VB )/R1

0
0

−π/ω
0
t
π/ω
−V0VX (t) (Dotted)

V0

VB

3.5
IX =

VX −VB
R1

VX < 0
VX > 0

Plotting IX vs. VX for VB = −1 V and VB = 1 V, we get:

IX
IX for VB = −1 V
IX for VB = 1 V
1/R1
Slope = 1/R1
−1
VX (V)
−1/R1
Slope = 1/R1

3.6 First, note that ID1 = 0 always, since D1 is reverse biased by VB (due to the assumption that VB > 0).
We can write IX as
IX = (VX − VB )/R1
Plotting this,we get:

IX

VB
VX (V)

Slope = 1/R1

3.7
VX −VB
R1
VX −VB
R1 R2

IX =
IR1 =

VX < VB
VX > VB

VX − VB
R1

Plotting IX and IR1 for VB = −1 V, we get:

IX
IX for VB = −1 V
IR1 for VB = −1 V

Slope = 1/R1 + 1/R2

−1
Slope = 1/R1

Plotting IX and IR1 for VB = 1 V, we get:

VX (V)

IX
IX for VB = 1 V
IR1 for VB = 1 V

Slope = 1/R1 + 1/R2

1
VX (V)Slope = 1/R1

3.8
IX =
IR1 =

0
VX
R1

+

VB
R1 +R2
VX
R1

VX −VB
R2

VX <
VX >

VX <
VX >

VB
R1 +R2 R1
VB
R1 +R2 R1

VB
R1 +R2 R1
VB
R1 +R2 R1

Plotting IX and IR1 for VB = −1 V, we get:

IX for VB = −1 V
IR1 for VB = −1 V

Slope = 1/R1 + 1/R2

−VB /R2

Slope = 1/R1

VB
R
R1 +R2 1
VB
R1 +R2

Plotting IX and IR1 for VB = 1 V, we get:

VX (V) IX for VB = 1 V
IR1 for VB = 1 V

Slope = 1/R1 + 1/R2

Slope = 1/R1

VB
R1 +R2
VB
R
R1 +R2 1

VX (V)

3.9 (a)

Vout (V)

Vout =

VB
Vin

Vin < VB
Vin > VB

5
Slope = 1

4

3

2

1

−5

−4

−3

−2

−1

0

0

1

(b)
Vout =

Vin − VB
0

Vin < VB
Vin > VB

2

3

4

5
Vin (V)

Vout (V)

2
1

−5

−4

−3

−2

−1

00

1

2

3

4

−1

5
Vin (V)

−2
−3
Slope = 1

−4
−5
−6
−7

(c)

Vout (V)

Vout = Vin − VB

3
Slope = 1

2
1

−5

−4

−3

−2

−1

0
−1
−2
−3
−4
−5
−6
−7

0

1

2

3

4

5
Vin (V)

(d)

Vout (V)

Vout =

Vin
VB

Vin < VB
Vin > VB

2
1

−5

−4

−3

−2

−1

0

0

1

−1
Slope = 1

−2
−3
−4
−5(e)
Vout =

0
Vin − VB

Vin < VB
Vin > VB

2

3

4

5
Vin (V)

Vout (V)

3

Slope = 1

2

1

−5

−4

−3

−2

−1

0

0

1

2

3

4

5
Vin (V)

3.11 For each part, the dotted line indicates Vin (t), while the solid line indicates Vout (t). Assume V0 > VB .
(a)

Vout (t) (V)

Vout =

VB
Vin

Vin < VB
Vin > VB

V0
VB

−π/ωπ/ω
t

−V0
(b)
Vout =

Vin − VB
0

Vin < VB
Vin > VB

Vout (t) (V)

V0
VB

−π/ω

π/ω
t

−V0

−V0 − VB

(c)

Vout (t) (V)

Vout = Vin − VB

V0
VB
V0 − VB

−π/ω

π/ω
t

−V0

−V0 − VB

(d)

Vout (t) (V)

Vout =

Vin
VB

Vin < VB
Vin > VB

V0
VB

−π/ω

π/ω
t

−V0
(e)
Vout =

0
Vin − VB

Vin < VB
Vin > VB

Vout (t) (V)

V0VB
V0 − VB

−π/ω

π/ω
t

−V0

3.12 For each part, the dotted line indicates Vin (t), while the solid line indicates Vout (t). Assume V0 > VB .
(a)
Vin − VB
0

Vout (t) (V)

Vout =

Vin < VB
Vin > VB

V0
VB

−π/ω

π/ω
t

−V0

−V0 − VB
(b)
Vout =

Vin
VB

Vin < VB
Vin > VB

Vout (t) (V)

V0
VB

−π/ω

π/ω
t

−V0
(c)

Vout (t) (V)

Vout =...