Matrizes

Disponível somente no TrabalhosFeitos
  • Páginas : 7 (1502 palavras )
  • Download(s) : 0
  • Publicado : 4 de abril de 2012
Ler documento completo
Amostra do texto
matrizes
As matrizes são estruturas matemáticas organizadas na forma de tabela com linhas e colunas, utilizadas na organização de dados e informações. Nos assuntos ligados à álgebra, as matrizes são responsáveis pela solução de sistemas lineares. Elas podem ser construídas com m linhas e n colunas, observe:
, matriz de ordem 3 x 1. (3 linhas e 1 coluna).

, matriz de ordem 3 x 2. (3 linhase 2 colunas)

, matriz de ordem 4 x 2. (4 linhas e 2 colunas)

, matriz de ordem 1 x 4. (1 linha e 4 colunas)

As matrizes com número de linhas e colunas iguais são denominadas matrizes quadradas. Observe:
, matriz quadrada de ordem 2 x 2.

, matriz quadrada de ordem 3 x 3.


Na matriz , temos que cada elemento ocupa seu espaço de acordo com a seguinte localização:
O elemento 2está na 1ª linha e 1ª coluna.
O elemento 5 está na 1ª linha e 2ª coluna.
O elemento 7 está na 2ª linha e 1ª coluna.
O elemento –9 está na 2ª linha e 2ª coluna.
Portanto, temos:
aij, onde i = linhas e j = colunas.
a11 = 2
a12 = 5
a21 = 7
a 22 = –9

Podemos construir uma matriz de acordo com uma lei de formação baseada em situações variadas. Por exemplo, vamos construir uma matriz deordem 3 x 3, seguindo a orientação aij = 3i + 2j.

Vamos escrever a matriz B dada por (aij)4x4, de modo que i + j, se i = j e i – j, se i ≠ j.








A matriz e os determinantes não são encontrados apenas no estudo da matemática, mas também na engenharia, informática, tabelas financeiras etc. Uma matriz é um conjunto ordenado de elementos dispostos em linhas e colunas representadasrespectivamente por m e n, onde n ≥ 1 e m ≥ 1.
Para representar essas linhas e colunas devemos obedecer às regras, dependendo do número de linhas e colunas a matriz recebe um nome e podemos também aplicar a elas as quatro operações.

Determinante é um tipo de matriz, mas essa deverá ter o mesmo número de linhas e o mesmo número de colunas, que é chamada de matriz quadrada. Nele não aplicamos asquatro operações, mas tem suas propriedades, como achar o valor numérico de um determinante.
A operação com qualquer matriz sempre resultará em outra matriz, independentemente da operação utilizada.

Antes de falarmos da adição e da subtração de matrizes, iremos relembrar do que uma matriz é formada: toda matriz tem seus elementos que são dispostos em linhas e colunas.

A quantidade delinhas e colunas deve ser maior ou igual a 1. Cada elemento vem representado com a linha e a coluna que pertence. Exemplo: Dada uma matriz B de ordem 2 x 3 o elemento que se encontra na 1º linha e 2° coluna será representado por b12.

►Adição

As matrizes envolvidas na adição devem ser da mesma ordem. E o resultado dessa soma será também outra matriz com a mesma ordem.

Assim podemos concluirque:

Se somarmos a matriz A com a matriz B de mesma ordem, A + B = C, teremos como resultado outra matriz C de mesma ordem e para formar os elementos de C somaremos os elementos correspondentes de A e B, assim: a11 + b11 = c11.

Exemplos:
Dada a matriz A= 3 x 3 e matriz B= 3 x 3, se somarmos a A + B, teremos:

+ = 3 x 3

Observe os elementos em destaques:

a13 = - 1 e b13 =- 5 ao somarmos esses elementos chegaremos a um terceiro que é o
c13 = -6. Pois -1 + (-5) = -1 – 5 = - 6

O mesmo ocorre com os outros elementos, para chegarmos ao elemento c32, tivemos que somar a32 + b32. Pois, 3 + (-5) = 3 – 5 = - 2

Assim: A + B = C, onde C tem a mesma ordem de A e B.

►Subtração

As duas matrizes envolvidas na subtração devem ser da mesma ordem. E a diferençadelas deverá dar como resposta outra matriz, mas de mesma ordem.

Assim temos:
Se subtrairmos a matriz A da matriz B de mesma ordem, A – B = C, obteremos outra matriz C de mesma ordem. E para formarmos os elementos de C, subtrairemos os elementos de A com os elementos correspondentes de B, assim: a21 – b21 = c21.

Exemplos:

Dada a matriz A = 3 x 3 e B = 3 x 3, se subtrairmos A – B,...
tracking img