Matriz

Disponível somente no TrabalhosFeitos
  • Páginas : 6 (1332 palavras )
  • Download(s) : 0
  • Publicado : 9 de maio de 2011
Ler documento completo
Amostra do texto
As matrizes são estruturas matemáticas organizadas na forma de tabela com linhas e colunas, utilizadas na organização de dados e informações. Nos assuntos ligados à álgebra, as matrizes são responsáveis pela solução de sistemas lineares. Elas podem ser construídas com m linhas e n colunas, observe:

, matriz de ordem 3 x 1. (3 linhas e 1 coluna).

, matriz de ordem 3 x 2. (3 linhas e 2colunas)

, matriz de ordem 4 x 2. (4 linhas e 2 colunas)

, matriz de ordem 1 x 4. (1 linha e 4 colunas)

As matrizes com número de linhas e colunas iguais são denominadas matrizes quadradas. Observe:

, matriz quadrada de ordem 2 x 2.

, matriz quadrada de ordem 3 x 3.

, matriz quadrada de ordem 4 x 4.

Na matriz , temos que cada elemento ocupa seu espaço de acordo com a seguintelocalização:

O elemento 2 está na 1ª linha e 1ª coluna.
O elemento 5 está na 1ª linha e 2ª coluna.
O elemento 7 está na 2ª linha e 1ª coluna.
O elemento –9 está na 2ª linha e 2ª coluna.

Portanto, temos:

aij, onde i = linhas e j = colunas.
a11 = 2
a12 = 5
a21 = 7
a 22 = –9

Produto de matrizes

Para que exista o produto de duas matrizes A e B , o número de colunas de A , tem deser igual ao número de linhas de B.

Amxn x Bnxq = Cmxq

Observe que se a matriz A tem ordem m x n e a matriz B tem ordem n x q , a matriz produto C tem ordem m x q .
Vamos mostrar o produto de matrizes com um exemplo:

Onde L1C1 é o produto escalar dos elementos da linha 1 da 1ª matriz pelos elementos da coluna1 da segunda matriz, obtido da seguinte forma:

L1C1 = 3.2 + 1.7 = 13.Analogamente, teríamos para os outros elementos:
L1C2 = 3.0 + 1.5 = 5
L1C3 = 3.3 + 1.8 = 17
L2C1 = 2.2 + 0.7 = 4
L2C2 = 2.0 + 0.5 = 0
L2C3 = 2.3 + 0.8 = 6
L3C1 = 4.2 + 6.7 = 50
L3C2 = 4.0 + 6.5 = 30
L3C3 = 4.3 + 6.8 = 60, e, portanto, a matriz produto será igual a:

Observe que o produto de uma matriz de ordem 3x2 por outra 2x3, resultou na matriz produto P
de ordem 3x3.
Nota: O produto dematrizes é uma operação não comutativa, ou seja: A x B ¹ B x A

DETERMINANTES

Entenderemos por determinante , como sendo um número ou uma função, associado a uma matriz quadrada , calculado de acordo com regras específicas .

É importante observar , que só as matrizes quadradas possuem determinante .

Regra para o cálculo de um determinante de 2ª ordem
Dada a matriz quadrada de ordem 2a seguir:

O determinante de A será indicado por det(A) e calculado da seguinte forma :
det (A) = ½ A½ = ad - bc
Exemplo:

Ora, senx.senx + cosx.cosx = sen2x + cos2x = 1 ( Relação Fundamental da Trigonometria ) . Portanto, o determinante da matriz dada é igual à unidade.

Regra para o cálculo de um determinante de 3ª ordem ( Regra de SARRUS).

SARRUS (pronuncia-se Sarrí), cujo nomecompleto é Pierre Frederic SARRUS (1798 - 1861), foi professor na universidade francesa de Strasbourg. A regra de SARRUS, foi provavelmente escrita no ano de 1833.

Nota: São escassas, e eu diria, inexistentes, as informações sobre o Prof. SARRUS nos livros de Matemática do segundo grau, que apresentam (ou mais simplesmente apenas citam) o nome do professor, na forma REGRA DE SARRUS, para ocálculo dos determinantes de terceira ordem. Graças ao Prof. José Porto da Silveira - da Universidade Federal do Rio Grande do Sul, pudemos disponibilizar a valiosa informação acima! O Prof. SARRUS, foi premiado pela Academia Francesa de Ciências, pela autoria de um trabalho que versava sobre as integrais múltiplas, assunto que vocês estudarão na disciplina Cálculo III, quando chegarem à Universidade.Para o cálculo de um determinante de 3ª ordem pela Regra de Sarrus, proceda da seguinte maneira:

1 - Reescreva abaixo da 3ª linha do determinante, a 1ª e 2ª linhas do determinante.

2 - Efetue os produtos em "diagonal" , atribuindo sinais negativos para os resultados à esquerda e sinal positivo para os resultados à direita.

3 - Efetue a soma algébrica. O resultado encontrado será o...
tracking img