Nickel based superalloys

Disponível somente no TrabalhosFeitos
  • Páginas : 14 (3405 palavras )
  • Download(s) : 0
  • Publicado : 29 de março de 2013
Ler documento completo
Amostra do texto
Nickel Based Superalloys

http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superallo...

Nickel Based Superalloys
H. K. D. H. Bhadeshia
A superalloy is a metallic alloy which can be used at high temperatures, often in excess of 0.7 of the
absolute melting temperature. Creep and oxidation resistance are the prime design criteria.
Superalloys can be based on iron, cobalt or nickel, thelatter being best suited for aeroengine
applications.
The essential solutes in nickel based superalloys are aluminium and/or titanium, with a total
concentration which is typically less than 10 atomic percent. This generates a two-phase equilibrium
microstructure, consisting of gamma (γ) and gamma-prime (γ'). It is the γ' which is largely
responsible for the elevated-temperature strength ofthe material and its incredible resistance to
creep deformation. The amount of γ' depends on the chemical composition and temperature, as
illustrated in the ternary phase diagrams below.

The Ni-Al-Ti ternary phase diagrams show the γ and γ' phase field. For a given chemical
composition, the fraction of γ' decreases as the temperature is increased. This phenomenon is used
in order todissolve the γ' at a sufficiently high temperature (a solution treatment) followed by ageing
at a lower temperature in order to generate a uniform and fine dispersion of strengthening
precipitates.
The γ-phase is a solid solution with a cubic-F lattice and a random distribution of the different
species of atoms. Cubic-F is short for face-centred cubic.
By contrast, γ' has a cubic-P (primitive cubic)lattice in which the nickel atoms are at the face-centres
and the aluminium or titanium atoms at the cube corners. This atomic arrangement has the chemical
formula Ni3Al, Ni3Ti or Ni3(Al,Ti). However, as can be seen from the (γ+γ')/γ' phase boundary on the
ternary sections of the Ni, Al, Ti phase diagram, the phase is not strictly stoichiometric. There may
exist an excess of vacancies on oneof the sublattices which leads to deviations from stoichiometry;
alternatively, some of the nickel atoms might occupy the Al sites and vice-versa. In addition to
aluminium and titanium, niobium, hafnium and tantalum partition preferentially into γ'.

1 de 11

6/2/2008 2:36 PM

Nickel Based Superalloys

Crystal structure of γhttp://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superallo...

Crystal structure of γ'

The γ phase forms the matrix in which the γ' precipitates. Since both the phases have a cubic lattice
with similar lattice parameters, the γ' precipitates in a cube-cube orientation relationship with the γ.
This means that its cell edges are exactly parallel to corresponding edges of the γ phase.
Furthermore, because their lattice parameters are similar,the γ' is coherent with the γ when the
precipitate size is small. Dislocations in the γ nevertheless find it difficult to penetrate γ', partly
because the γ' is an atomically ordered phase. The order interferes with dislocation motion and
hence strengthens the alloy.
The small misfit between the γ and γ' lattices is important for two reasons. Firstly, when combined
with the cube-cubeorientation relationship, it ensures a low γ/γ' interfacial energy. The ordinary
mechanism of precipitate coarsening is driven entirely by the minimisation of total interfacial energy.
A coherent or semi-coherent interface therefore makes the microstructure stable, a property which is
useful for elevated temperature applications.
The magnitude and sign of the misfit also influences the development ofmicrostructure under the
influence of a stress at elevated temperatures. The misfit is said to be positive when the γ' has a
larger lattice parameter than γ. The misfit can be controlled by altering the chemical composition,
particularly the aluminium to titanium ratio. A negative misfit stimulates the formation of rafts of γ',
essentially layers of the phase in a direction normal to the...
tracking img