Matematica

Disponível somente no TrabalhosFeitos
  • Páginas : 15 (3748 palavras )
  • Download(s) : 0
  • Publicado : 18 de dezembro de 2012
Ler documento completo
Amostra do texto
EQUAÇÃO DE 1° GRAU
SENTEÇAS
Uma sentença matemática pode ser verdadeira ou falsa

exemplo de uma sentença verdadeira

a) 15 + 10 = 25

b) 2 . 5 = 10

exemplo de uma sentença falsa

a) 10 + 3 = 18

b) 3 . 7 = 20

SENTEÇAS ABERTAS E SENTENÇAS FECHADAS

Sentenças abertas são aquelas que possuem elementos desconhecidos. Esses elementos desconhecidos são chamados variáveis ouincógnitas.

exemplos

a) x + 4 = 9 (a variável é x)

b) x + y = 20 (as variáveis são x e y)

Sentenças fechada ou são aquelas que não possuem variáveis ou incógnitas.

a) 15 -5 = 10 (verdadeira)

b) 8 + 1 = 12 (falsa)

EQUAÇÕES

Equações são sentenças matemáticas abertas que apresentam o sinal de igualdade

exemplos

a) x - 3 = 13 ( a variável ou incógnita x)

b) 3y + 7 = 15 ( Avariável ou incógnita é y)

A expressão à esquerdas do sinal = chama-se 1º membro

A expressão à direita do sinal do igual = chama-se 2º membro

RESOLUÇÃO DE EQUAÇÕES DO 1º GRAU COM UMA VARIÁVEL

O processo de resolução está baseado nas propriedades das igualdades

1º Propriedade

Podemos somar (ou subtrair) um mesmo número dos dois membros da igualdade, obtendo uma sentença equivalente.exemplos:

a) Resolver x - 3 = 5
solução
x - 3 +3 = 5 + 3
x + 0 = 8
x = 8

b) resolver x + 2 = 7

solução
x+2 -2 = 7 - 2
x + 0 = 5
x = 5

Baseado nessa propriedade,podemos concluir que: pode-se passar um termo de um membro para outro e troca-se o sinal desse termo.

exemplos

a) x - 3 = 5

x = x + 3

x = 8

b) x + 2 = 7

x = 7 - 2

x = 5

EXERCICIOS

1) Resolvaas seguintes equações

a) x + 5 = 8 ( R = 3)
b) x - 4 = 3 (R = 7)
c) x + 6 = 5 ( R = -1)
d) x -3 = - 7 (R= -4)
e) x + 9 = -1 (R=-10)
f) x + 28 = 11 (R=-17)
g) x - 109 = 5 (R= 114)h) x - 39 = -79 (R=-40)i) 10 = x + 9 (R=2)
j) 15 = x + 20 (R= -5)
l) 4 = x - 10 ( R= 14)
m) 7 = x + 8 ( R= -1)
n) 0 = x + 12 (R= -12)o) -3 = x + 10 (R= -13)

2º Propriedade

Podemos multiplicar (oudividir) ambos os membros de uma igualdade por um número diferentes de zero, obtendo uma sentença equivalente.

exemplo de resolução pelo modo prático

a) 3x =12

x = 12 /3

x = 4

b) x / 5 = 2

x = 2 . 5

x = 10

Importante !

Veja a equação -x = 5

interessa-nos valor de x e não o valor de -x então devemos multiplicar os dois membros da equação por -1

EXERCICIOS

1) Resolva asseguintes equações
a) 3x = 15 (R=5)
b) 2x = 14 ( R=7)
c) 4x = -12 (R=-3)
d) 7x = -21 (R=-3)
e) 13x = 13 (R= 1)f) 9x = -9 (R=-1) 
g) 25x = 0 (R=0)
h) 35x = -105 (R=-3)
i) 4x = 1 (R=1/4)
j) 21 = 3x (R=7) 
l) 84 = 6x (R=14)
m) x/3 =7 (R=21)
n) x/4 = -3 (R=-12)
o) 2x/5 = 4 (R=10) 
p) 2x/3 = -10 (R=-15)q) 3x/4 = 30 (R=40)
r) 2x/5 = -18 (R= -45)

METODO PRÁTICO PARA RESOLVER EQUAÇÕESPara resolver equação de 1° grau usaremos um método pratico seguindo o roteiro:

1) Isolar no 1° membro os termos em x e no 2° membro os termos que não apresentam x ( devemos trocar o sinal dos termos que mudam de membro para outro)

2) Reduzir os termos semelhantes

3) Dividir ambos os membros pelo coeficiente de x

Exemplos

1) 3X – 4 = 2X + 8
3X- 2X = 8 + 4
X = 12

2) 7X – 2 + 4= 10 + 5X
7X – 5X = 10 + 2 – 4
7X – 5X = 10 + 2 – 4
2X = 8
X = 8/2
X= 4

3) 4(X + 3) =1
4X + 12 = 1
4X = 1 – 12
X = -11/4

4) 5(2x -4) = 7 ( x + 1) – 3
10x – 20 = 7x + 7 -3
10x – 7x = 7 -3 + 20
3x = 24
x = 24/ 3
x = 8

5) x/3 + x/2 = 15
2x / 6 + 3x / 6 = 90 / 6
2x + 3x = 90
5x = 90
x = 90 / 5
x = 18

EXERCICIOS

1)Resolva as equações

a) 6x = 2x + 16 (R:4)b) 2x – 5 =x + 1 (R: 6)
c) 2x + 3 = x + 4 (R: 1)
d) 5x + 7 = 4x + 10 (R: 3)
e) 4x – 10 = 2x + 2 (R: 6)
f) 4x – 7 = 8x – 2(R:-5/4)
g) 2x + 1 = 4x – 7 (R:4)
h) 9x + 9 + 3x = 15 (R: ½)
i) 16x – 1 = 12x + 3 (R:1)j) 3x – 2 = 4x + 9 (R:-11)
l) 5x -3 + x = 2x + 9 (R:3)
m) 17x – 7x = x + 18 (R: 2)
n) x + x – 4 = 17 – 2x + 1 ( 11/2)
o) x + 2x + 3 – 5x = 4x – 9 ( R:2)p) 5x + 6x – 16 = 3x + 2x - 4 (R:2)q)...
tracking img