Matematica da biolagoa

Disponível somente no TrabalhosFeitos
  • Páginas : 5 (1027 palavras )
  • Download(s) : 0
  • Publicado : 12 de março de 2013
Ler documento completo
Amostra do texto
Foi enquanto se dedicava ao estudo de algumas destas funções que Fermat deu conta das limitações do conceito clássico de reta tangente a uma curva como sendo aquela que encontrava a curva num único ponto.

Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto - esta dificuldade ficou conhecida na História da Matemática comoo “Problema da Tangente”.

Estas idéias constituíram o embrião do conceito de derivada e levou Laplace a considerar Fermat “o verdadeiro inventor do Cálculo Diferencial”. Contudo, Fermat não dispunha de notação apropriada e o conceito de limite não estava ainda claramente definido.

No séc. XVII Leibniz algebriza o Cálculo Infinitesimal, introduzindo os conceitos de variável, constante eparâmetro, bem como a notação dx e dy para designar a menor possível das diferenças em x e em y. Desta notação surge o nome do ramo da Matemática conhecido hoje como “Cálculo Diferencial”.

A Teoria dos Limites, tópico introdutório é fundamental da Matemática Superior. Portanto, o que veremos, será uma introdução à Teoria dos Limites, dando ênfase principalmente ao cálculo de limites de funções, combase nas propriedades pertinentes.

Matemático francês - Augustin Louis Cauchy – 1789/1857 foi, entre outros, um grande estudioso da Teoria dos Limites. Antes dele, Isaac Newton, inglês, 1642/1727 e Gottfried Wilhelm Leibniz, alemão, 1646/1716, já haviam desenvolvido o Cálculo Infinitesimal.

Dada a função y = f(x), definida no intervalo real (a, b), dizemos que esta função f possui um limitefinito L quando x tende para um valor x0, se para cada número positivo ε , por menor que seja, existe em correspondência um número positivo δ , tal que para |x - x0| 0, tal que, para |x - 3| < δ , se tenha |(x + 5) - 8| < δ . Ora, |(x + 5) - 8| < δ é equivalente a x - 3

| < ε. Portanto, a desigualdade |x - 3| < δ , é verificada, e neste caso δ = δ. Concluímos então que 8 é o limite da funçãopara x tendendo a 3 ( x δ 3) .

O cálculo de limites pela definição, para funções mais elaboradas, é extremamente laborioso e de relativa complexidade. Assim é que, apresentaremos as propriedades básicas, sem demonstrá-las e, na seqüência, as utilizaremos para o cálculo de limites de funções. Antes, porém, valem as seguintes observações preliminares: a) É conveniente observar que a existência dolimite de uma função, quando, x → x0 , não depende necessariamente que a função esteja definida no ponto x0 , pois quando calculamos um limite, consideramos os valores da função tão próximos quanto queiramos do ponto x0 , porém não coincidente com x0, ou seja, consideramos os valores da função na vizinhança do ponto x0 .Para exemplificar, consideremos o cálculo do limite da função abaixo, para x3.

Observe que para x = 3, a função não é definida. Entretanto, lembrando que x2 - 9 = (x + 3) (x - 3), substituindo e simplificando, a função fica igual a f(x) = x + 3, cujo limite para x δ 3 é igual a 6, obtido pela substituição direta de x por 3.

b) o limite de uma função y = f(x), quando x → x0, pode inclusive, não existir, mesmo a função estando definida neste ponto x0 , ou seja ,existindo f(x0).

c) ocorrerão casos nos quais a função f(x) não está definida no ponto x0, porém existirá o limite de f(x) quando x → x0 . d) nos casos em que a função f(x) estiver definida no ponto x0 , e existir o limite da função f(x) para x → x0 e este limite coincidir com o valor da função no ponto x0, diremos que a função f(x) é Contínua no ponto x0 . e) já vimos à definição do limite de umafunção f(x) quando x tende a x0, ou x → x0 . Se x tende para x0, para valores imediatamente inferiores a x0, dizemos que temos um limite à esquerda da função. Se x tende para x0, para valores imediatamente superiores a x0, dizemos que temos um limite à direita da função.

Pode-se demonstrar que se esses limites à direita e à esquerda forem iguais, então este será o limite da função quando x →...
tracking img