Estatistica e geoestatistica

Disponível somente no TrabalhosFeitos
  • Páginas : 13 (3146 palavras )
  • Download(s) : 0
  • Publicado : 11 de outubro de 2011
Ler documento completo
Amostra do texto
APOSTILA 12 - ESTATÍSTICA E GEOESTATÍSTICA

1. ESTATÍSTICA

É uma parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação de dados e para a utilização dos mesmos na tomada de decisões.
A coleta, a organização, a descrição dos dados, é a interpretação de coeficientes pertencem à ESTATÍSTICA DESCRITIVA, enquanto a análise e ainterpretação dos dados, associado a uma margem de incerteza, ficam a cargo da ESTATÍSTICA INDUTIVA ou INFERENCIAL, também chamada como a medida da incerteza ou métodos que se fundamentam na teoria da probabilidade.
A estatística utiliza-se através das teorias probabilísticas para explicar a freqüência de fenômenos e para possibilitar a previsão desses fenômenos no futuro.
Algumaspráticas estatísticas incluem, por exemplo, o planejamento, a sumarização e a interpretação de observações. Dado que o objetivo da estatística é a produção da melhor informação possível a partir dos dados disponíveis, alguns autores sugerem que a estatística é um ramo da teoria da decisão.

2. PROBABILIDADE
A idéia geral da probabilidade é freqüentemente dividida em dois conceitosrelacionados:
• Probabilidade de freqüência ou probabilidade aleatória, que representa uma série de eventos futuros cuja ocorrência é definida por alguns fenômenos físicos aleatórios. Este conceito pode ser dividido em fenômenos físicos que são previsíveis através de informação suficiente (ex: uma roleta) e fenômenos que são essencialmente imprevisíveis (ex: um decaimento radioativo).
•Probabilidade epistemológica ou probabilidade Bayesiana, que representa nossas incertezas sobre proposições quando não se tem conhecimento completo das circunstâncias causativas. Tais proposições podem ser sobre eventos passados ou futuros, mas não precisam ser. Alguns exemplos de probabilidade epistemológica são designar uma probabilidade à proposição de que uma lei da Física proposta seja verdadeira, edeterminar o quão "provável" é que um suspeito cometeu um crime, baseado nas provas apresentadas.
É uma questão aberta se a probabilidade aleatória é redutível à probabilidade epistemológica baseado na nossa inabilidade de predizer com precisão cada força que poderia afetar o rolar de um dado, ou se tais incertezas existem na natureza da própria realidade, particularmente em fenômenos quânticosgovernados pelo princípio da incerteza de Heisenberg. Embora as mesmas regras matemáticas se apliquem não importando qual interpretação seja escolhida, a escolha tem grandes implicações pelo modo em que a probabilidade é usada para modelar o mundo real.

3. TIPOS DE VARIÁVEIS

Variável é a característica de interesse que é medida em cada elemento da amostra ou população. Como o nome diz, seusvalores variam de elemento para elemento. As variáveis podem ter valores numéricos ou não numéricos. As variáveis podem ser classificadas da seguinte forma:
Variáveis Quantitativas: são as características que podem ser medidas em uma escala quantitativa, ou seja, apresentam valores numéricos que fazem sentido. Podem ser contínuas ou discretas.
Variáveis discretas: característicasmensuráveis que podem assumir apenas um número finito ou infinito contável de valores e, assim, somente fazem sentido valores inteiros. Geralmente é o resultado de contagens. Exemplos: número de filhos, número de bactérias por litro de leite, número de cigarros fumados por dia.
Variáveis contínuas: características mensuráveis que assumem valores em uma escala contínua (na reta real), para asquais valores fracionais fazem sentido. Usualmente devem ser medidas através de algum instrumento. Exemplos: peso (balança), altura (régua), tempo (relógio), pressão arterial, idade.

4. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA

AT - amplitude de classe maior valor menor valor.
N - numero total de dados.
K- Formula de sturges: 1 + 3, 3 x long AC= AT / K
AC -...
tracking img