Atps calculo 3 etapa 1

Disponível somente no TrabalhosFeitos
  • Páginas : 3 (750 palavras )
  • Download(s) : 0
  • Publicado : 19 de novembro de 2012
Ler documento completo
Amostra do texto
ETAPA 1

PASSO1

O SURGIMENTO DO CÁLCULO DIFERENCIAL INTEGRAL

O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemáticadesenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou ovolume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foidesenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.
Historicamente, Newton foi o primeiro a aplicar o cálculo à física, ao passo que Leibnizdesenvolveu a notação utilizada até os dias de hoje. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.Newton aperfeiçoou-se nos resultados da tangente e quadratura dos primeiros dois terços do século XVII. Ele afirmava em termos físicos quais eram os dois problemas mais básicos de cálculo: 1) Dado ocomprimento do espaço continuamente, isto é, em todo instante de tempo, encontrar a velocidade do movimento, isto é, a derivada em qualquer tempo dado; 2) Dada a velocidade de movimento continuamente,encontrar o comprimento do espaço, isto é, a integral ou a antiderivada, descrita em qualquer tempo proposto.
Mas no lugar de derivadas, Newton empregou flúxions de variáveis, denominados, porexemplo, de x, e em vez de antiderivadas, usou o que ele chamou de fluentes. A partir de Gregory Newton adotou-se a idéia de que a área entre uma curva y e o eixo horizontal, era dependente do extremodireito, t = x. De fato, Newton pensou na área como sendo realmente gerada pelo movimento da reta vertical t = x. Assim, o flúxion da área era simplesmente yx. Então, a técnica de Newton para encontrar...
tracking img