A história da algebra

Páginas: 8 (1920 palavras) Publicado: 8 de junho de 2011
HISTÓRIA DA ÁLGEBRA
(uma visão geral)

Fonte: Tópicos de História da Matemática - John K. Baumgart

Estranha e intrigante é a origem da palavra "álgebra". Ela não se sujeita a uma etimologia nítida como, por exemplo, a palavra "aritmética", que deriva do grego arithmos ("número"). Álgebra é uma variante latina da palavra árabe al-jabr (às vezes transliterada al-jebr), usada no título de umlivro, Hisab al-jabr w'al-muqabalah, escrito em Bagdá por volta do ano 825 pelo matemático árabe Mohammed ibn-Musa al Khowarizmi (Maomé, filho de Moisés, de Khowarizm). Este trabalho de álgebra é com frequência citado, abreviadamente, como Al-jabr.

Uma tradução literal do título completo do livro é a "ciência da restauração (ou reunião) e redução", mas matematicamente seria melhor "ciência datransposição e cancelamento"- ou, conforme Boher, "a transposição de termos subtraídos para o outro membro da equação" e "o cancelamento de termos semelhantes (iguais) em membros opostos da equação". Assim, dada a equação:

x2 + 5x + 4 = 4 - 2x + 5x3

al-jabr fornece
x2 + 7x + 4 = 4 + 5x3

e al-muqabalah fornece
x2 + 7x = 5x3

Talvez a melhor tradução fosse simplesmente "a ciência dasequações".
Ainda que originalmente "álgebra" refira-se a equações, a palavra hoje tem um significado muito mais amplo, e uma definição satisfatória requer um enfoque em duas fases:
(1) Álgebra antiga (elementar) é o estudo das equações e métodos de resolvê-las.
(2) Álgebra moderna (abstrata) é o estudo das estruturas matemáticas tais como grupos, anéis e corpos - para mencionar apenas algumas.De fato, é conveniente traçar o desenvolvimento da álgebra em termos dessas duas fases, uma vez que a divisão é tanto cronológica como conceitual.
________________________________________
Equações algébricas e notação

A fase antiga (elementar), que abrange o período de 1700 a.C. a 1700 d.C., aproximadamente, caracterizou-se pela invenção gradual do simbolismo e pela resolução de equações(em geral coeficientes numéricos) por vários métodos, apresentando progressos pouco importantes até a resolução "geral" das equações cúbicas e quárticas e o inspirado tratamento das equações polinomiais em geral feito por François Viète, também conhecido por Vieta (1540-1603).

O desenvolvimento da notação algébrica evoluiu ao longo de três estágios: o retórico (ou verbal), o sincopado (no qualeram usadas abreviações de palavras) e o simbólico. No último estágio, a notação passou por várias modificações e mudanças, até tornar-se razoavelmente estável ao tempo de Isaac Newton. É interessante notar que, mesmo hoje, não há total uniformidade no uso de símbolos. Por exemplo, os americanos escrevem "3.1416" como aproximação de Pi, e muitos europeus escrevem "3,1416". Em alguns paíseseuropeus, o símbolo "÷" significa "menos". Como a álgebra provavelmente se originou na Babilônia, parece apropriado ilustrar o estilo retórico com um exemplo daquela região. O problema seguinte mostra o relativo grau de sofisticação da álgebra babilônica. É um exemplo típico de problemas encontrados em escrita cuneiforme, em tábuas de argila que remontam ao tempo do rei Hammurabi. A explanação,naturalmente, é feita em português; e usa-se a notação decimal indo-arábica em vez da notação sexagesimal cuneiforme. A coluna à direita fornece as passagens correspondentes em notação moderna. Eis o exemplo:

[1] Comprimento, largura. Multipliquei comprimento por largura, obtendo assim a área: 252. Somei comprimento e largura: 32. Pede-se: comprimento e largura.

[2] [Dado] 32 soma; 252 área. x+y=kxy=P } ... (A)
[3] [Resposta] 18 comprimento; 14 largura.
[4] Segue-se este método: Tome metade de 32 [que é 16]. k/2
16 x 16 = 256 (k/2)2
256 - 252 = 4 (k/2)2 - P = t2 } ... (B)
A raiz quadrada de 4 é 2.
16 + 2 = 18 comprimento. (k/2) + t = x.
16 - 2 = 14 largura (k/2) - t = y.
[5] [Prova] Multipliquei 18 comprimento por 14 largura.
18 x 14 = 252 área ((k/2)+t) ((k/2)-t)...
Ler documento completo

Por favor, assinar para o acesso.

Estes textos também podem ser interessantes

  • Breve historia da álgebra abstrata
  • Algebra
  • Algebra
  • algebra
  • Algebra
  • Algebra
  • algebra
  • Algebra

Seja um membro do Trabalhos Feitos

CADASTRE-SE AGORA!