integrais

Páginas: 5 (1154 palavras) Publicado: 2 de outubro de 2014
No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano1 e também surge naturalmente em dezenas de problemas de Física, como por exemplo na determinação da posição em todos os instantes de um objeto, se for conhecida a sua velocidade instantânea em todos os instantes. [carece de fontes]

O processo de se calcular a integral de umafunção é chamado de integração.2

Diferentemente da noção associada de derivação, existem várias definições para a integração, todas elas visando a resolver alguns problemas conceituais relacionados a limites, continuidade e existência de certos processos utilizados na definição. Estas definições diferem porque existem funções que podem ser integradas segundo alguma definição, mas não podemsegundo outra.1

A integral indefinida também é conhecida como antiderivada.

Uma integral definida pode ser própria ou imprópria, convergente ou divergente. Neste último caso, ela representa uma área infinita.

Integral indefinida[editar | editar código-fonte]
Integral indefinida é uma função (ou família de funções), assim definida 5 6 :

\int {f(x)}dx = F(x) se e somente se{\frac{dF(x)}{dx}}= {f(x)}, ou, o que é a mesma coisa, \int {f(x)}dx = F(x) \leftrightarrow {F' \left ( x \right )} = {f(x)}
Relação entre integral definida e indefinida[editar | editar código-fonte]
A integral definida {\int_{a}^{b}} {f(x)} dx é um número; não depende da variável x. A integral indefinida, ao contrário, é uma função ou família de funções. A conexão entre elas é dada pelo TeoremaFundamental do Cálculo. Se {f} for contínua em [a,b], então 7 .

{\int_{a}^{b}} {f(x)} dx = \int {f(x)} dx |_a^b
Ou seja, a integral indefinida, calculada no intervalo [a,b], resulta no valor da integral definida.

Teorema fundamental do Cálculo[editar | editar código-fonte]
Ver artigo principal: Teorema fundamental do cálculo
Caso se resolva a integral acima entre os limites a e b, o resultadofinal pode ser escrito como:

S = \int_{a}^{b} f(x) dx = F(b) - F(a)
onde a função F(x) é a função resultante da integração da função f(x). O problema da integração, isto é, de se encontrar a solução para uma integral, se resume portanto a encontrar a função F(x).

O resultado acima é extremamente importante pois ele oferece uma indicação de como obter a integral. Para ver isto, supõe-se que olimite superior da integral, isto é, b, seja muito próximo de a, tal que se possa escrever:

b = a + \Delta x
Como os pontos limites da integral estão muito próximos, pode-se escrever:

\int_{a}^{a+\Delta x} f(x) dx = F(a + \Delta x) - F(a)
Olhando na definição da integração como um limite, dada acima, pode-se dizer que a integral, neste caso, se resume a apenas um dos termos na soma, eportanto pode-se afirmar, sem causar um erro muito grande, que:

\int_{a}^{a+\Delta x} f(x) dx = f(a) \Delta x = F(a + \Delta x) - F(a)
Comparando com a definição da derivada de uma função:

f(x) = \frac{ F(x + \Delta x) - F(x) }{ \Delta x } \rightarrow f(x) = \frac{d}{dx} F(x)
vê-se que a função procurada F(x) é uma função tal que, quando tomada a sua derivada, obtém-se a função f(x).Em outras palavras, ao se calcular a derivada de uma função pode-se também calcular a integral da função resultante. Esta propriedade mostra que a integração na verdade é a operação inversa da derivação, pois se uma função for derivada e em seguida o resultado integrado, obtém-se a função original. Esta propriedade é chamada de Teorema fundamental do Cálculo.

Passo-a-Passo[editar | editarcódigo-fonte]
Integral Definida - Uma integral definida consta basicamente em integrar uma função constante nos intervalos, através das primitivas, que nada mais são do que a função integrada a cada membro.

Fórmula das Primitivas

\int a\cdot x^{n} dx = \frac{a\cdot x^{n+1}} {n+1}
Exemplo:

Cada membro da função é tratado como uma função em separado, para em seguida ser efetuada a soma...
Ler documento completo

Por favor, assinar para o acesso.

Estes textos também podem ser interessantes

  • integral
  • integrais
  • Integrais
  • Integral
  • integrais
  • Integrais
  • Integrais
  • integrais

Seja um membro do Trabalhos Feitos

CADASTRE-SE AGORA!