Binario

Páginas: 14 (3307 palavras) Publicado: 11 de setembro de 2014
Capítulo 2 - Representação binária de números inteiros e reais
2.1 Representação de um número na base dois
Escrever um número inteiro em binário, isto é, na base dois, não apresenta problema. Cada posição digital representará uma potência de dois, da mesma forma que nos números decimais, cada posição representa uma potência de dez. Assim, 23.457 significa:
2x104 + 3x103 + 4x102 + 5x101 +7x100.
Na base dois, a base usada nos computadores binários, o número 110101 representa:
1x25 + 1x24 + 1x22 + 1x20 = (53)decimal
Os números com parte fracionária, da mesma forma, podem ser representados, usando-se potências negativas de dez, na base dez e de dois, na base dois.
Assim, 456,78 significa: 4x102 + 5x101 + 6x100 + 7x10-1 + 8x10-2.
O número binário 101,101 significa, na base dois:1x22 + 0x21 + 1x20 + 1x2-1 +0x2-2 + 1x2-3 = 5,625
Sabe-se que, na base dez, para se multiplicar um número pela base, isto é, por dez, basta deslocar a vírgula uma casa para a direita.
O mesmo ocorre com qualquer base, em particular com a base dois. Para mutiplicar um número por dois, basta deslocar a vírgula uma casa para a direita.
7 = 111 , 14 = 1110 , 28 = 11100 , 3,5 = 11,1
Mostra-se que:0,8 = 0,1100110011001100...
0,4 = 0,01100110011001100...
1,6 = 1,1001100110011...
1,2 = 1,001100110011...
2.2 Conversão Decimal >> Binário
Números Inteiros
A conversão do número inteiro, de decimal para binário, será feita da direita para a esquerda, isto é, determina-se primeiro o algarismos das unidades ( o que vai ser multiplicado por 20 ) , em seguida o segundo algarismo da direita ( o quevai ser multiplicado por 21 ) etc...
A questão chave, por incrível que pareça, é observar se o número é par ou ímpar. Em binário, o número par termina em 0 e o ímpar em 1. Assim determina-se o algarismo da direita, pela simples divisão do número por dois; se o resto for 0 (número par) o algarismo da direita é 0; se o resto for 1 (número ímpar) o algarismo da direita é 1.
Por outro lado, é bomlembrar que, na base dez, ao se dividir um número por dez, basta levar a vírgula para a esquerda. Na base dois, ao se dividir um número por dois, basta levar a vírgula para a esquerda. Assim, para se determinar o segundo algarismo, do número em binário, basta lembrar que ele é a parte inteira do número original dividido por dois, abandonado o resto.
Vamos converter 25 de decimal para binário.Parte Fracionária do Número
A conversão da parte fracionária do número será feita, algarismo a algarismo, da esquerda para a direita, baseada no fato de que se o número é maior ou igual a 0,5 , em binário aparece 0,1, isto é, o correspondente a 0,5 decimal.
Assim, 0,6 será 0,1_ _ ..., ao passo que 0,4 será 0,0_ _ ...
Tendo isso como base, basta multiplicar o número por dois e verificar se oresultado é maior ou igual a 1. Se for, coloca-se 1 na correspondente casa fracionária, se 0 coloca-se 0 na posição. Em qualquer dos dois casos, o processo continua, lembrando-se, ao se multiplicar o número por dois, a vírgula move-se para a direita e, a partir desse ponto, estamos representando, na casa à direita, a parte decimal do número multiplicado por dois.
Vamos ao exemplo, representando, embinário, o número 0,625.
0,625 x 2 = 1,25 , logo a primeira casa fracionária é 1.
Resta representar o 0,25 que restou ao se retirar o 1 já representado.
0,25 x 2 = 0,5 , logo a segunda casa é 0.
Falta representar o 0,5 .
0,5 x 2 = 1 , logo a terceira casa é 1.
0,62510 = 0,1012
Quando o número tiver parte inteira e parte fracionária, podemos calcular, cada uma, separadamente.
Tentandorepresentar 0,8, verifica-se que é uma dízima.
0,8 = 0,110011001100....
Da mesma forma, vê-se que 5,8 = 101,11001100... , também uma dízima.
11,6 = 1011,10011001100... o que era óbvio, bastaria deslocar a vírgula uma casa para a direita, pois 11,6 = 2 x 5,8 .
2.3 Ponto fixo e ponto flutuante
Em todos esses exemplos, a posição da vírgula está fixa, separando a casa das unidades da primeira casa...
Ler documento completo

Por favor, assinar para o acesso.

Estes textos também podem ser interessantes

  • binario
  • Binarios
  • binario
  • Binários
  • Binarios
  • Binarios
  • Binário
  • Binarios

Seja um membro do Trabalhos Feitos

CADASTRE-SE AGORA!