Atps cálculo 2

Páginas: 13 (3039 palavras) Publicado: 2 de abril de 2013
ATPS – Cálculo II

Etapa 1 - Conceito de Derivada e Regras de Derivação

Essa atividade é importante para poder verificar a aplicação da derivada inserida em
conceitos básicos da física. A noção intuitiva de movimento, velocidade, aceleração é algo intrínseco a todos, já que é algo natural. No entanto, quando visto sob um olhar crítico científico, pode se observar as leis da física, em queas operações matemáticas e regras de derivação básica estão intimamente ligadas a essas leis.

Passo 1 - Pesquisar o conceito de velocidade instantânea a partir do limite, com Dt0.Comparar a fórmula aplicada na física com a fórmula usada em cálculo e explicar o significado da função v (velocidade instantânea), a partir da função s (espaço), utilizando o conceito da derivada que você aprendeuem cálculo, mostrando que a função velocidade é a derivada da função espaço.

Dar um exemplo, mostrando a função velocidade como derivada da função do espaço, utilizando no seu exemplo a aceleração como sendo a somatória do último algarismo que compõe o RA’S dos alunos integrantes do grupo.


Resposta:

Como sabemos existem muitas maneiras de descrever quão rapidamente algo se movem:velocidade média e velocidade escalar média, ambas as medidas sobre um intervalo de tempo Δt. Entretanto, a expressão “quão rapidamente” mais comumente se refere à quão rapidamente um partícula está se movendo em um dada instante – sua velocidade instantânea ou simplesmente velocidade v.

A velocidade em qualquer instante de tempo é obtida a partir da velocidade média reduzindo-se o intervalo de tempoΔt, fazendo-o tender a zero. À medida que Δt é reduzido, a velocidade média se aproxima de um valor limite, que é a velocidade naquele instante:
v=lim∆t→0∆x∆t= dxdt.

Esta equação mostra duas características da velocidade instantânea v. Primeiro v é a taxa na qual a posição da partícula x está em relação à t. Segundo, v em qualquer instante é a inclinação da curva (ou coeficiente angular da retatangente á curva) posição-tempo da partícula no ponto representando esse instante. A velocidade é outra grandeza vetorial, e assim possui direção e sentido associados.

Em cálculo a velocidade instantânea é o número a que tendem as velocidades médias quando o intervalo diminui de tamanho, isto é, quando h torna-se cada vez menor. Definimos então, velocidade instantânea = Limite, quando h tendea zero, de sa+h-s(a)h.

Isso é escrito de forma mais compacta usando a notação de limite, da seguinte maneira:


Seja s(t) a posição no instante t. Então, a velocidade instantânea em t = a é definida como:

velocidade instantâneaem t=a= limh→0sa+h-s(a)h

Em palavras, a velocidade instantânea de um objeto em um instante t = a é dada pelo limite da velocidade média em um intervalo quandoesse intervalo diminui em torno de a.

As equações utilizadas tanto em física como em calculo seguem a mesma lógica, sendo que em física utilizamos a derivada para descrever a posição da partícula dado sua posição em relação ao seu tempo expressada por dx (t)dt t=t0 em que dx e a denotação da função posição ou espaço e t a denotação da função tempo.

Somatório do ultimo número RA’S dos alunosdo grupo = 42  4+2 = 6

Exemplo: x = 6t² - 2t no tempo em 1 segundo.

v= dxdt 6t2-2t

Derivando posição em relação ao tempo: v=6.2t2-1-2.1t1-1 → v= 12t-2

Aplicando no tempo igual a 1 segundo: v= 12.1-2 → v=10 m/s

Derivando velocidade em relação ao tempo: a= dvdt 12t-2 → a= 12.1t1-1 → a=12

A aceleração não varia em nenhum instante.


Passo 2

Montar uma tabela, usando seuexemplo acima, com os cálculos e plote num gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado.

Calcular a área formada pela função da velocidade, para o intervalo dado acima.

| S(m) | S(m) x t(s) | V(m/s) x t(s)|

TEMPO| X=6t²-2t |...
Ler documento completo

Por favor, assinar para o acesso.

Estes textos também podem ser interessantes

  • ATPS Cálculo 2
  • atps calculo 2 final
  • ATPS CALCULO 2
  • ATPS CALCULO 2
  • calculo 2 atps
  • atps calculo 2
  • atps de calculo 2
  • ATPS Cálculo 2

Seja um membro do Trabalhos Feitos

CADASTRE-SE AGORA!