Xxxxadqweqfqwf

Disponível somente no TrabalhosFeitos
  • Páginas : 2 (282 palavras )
  • Download(s) : 0
  • Publicado : 21 de março de 2012
Ler documento completo
Amostra do texto
Output do HLM
(8º encontro – 21/mar/12)
exercício de Notas de matemática – Influência do Desempenho dos alunos ou das Escolas

Specifications for this HLM2 run
Problem Title: notitle

The data source for this run = exemplo 1
The command file for this run = C:\Users\DEISE~1.MAR\AppData\Local\Temp\whlmtemp.hlm
Output file name = C:\HLM7 StudentExamples\Chapter2\hlm2.html
The maximum number of level-1 units = 7185
The maximum number of level-2 units = 160
The maximum number of iterations = 100

Method of estimation: restrictedmaximum likelihood

The outcome variable is MATHACH
Summary of the model specified
Level-1 Model
MATHACHij = β0j + rij
Level-2 Model
β0j = γ00 + u0j
Mixed Model
MATHACHij = γ00 + u0j+rij

Final Results - Iteration 4
Iterations stopped due to small change in likelihood function

σ2 = 39.14831

τ
INTRCPT1,β0 | 8.61431 |

Random level-1 coefficient |Reliability estimate |
INTRCPT1,β0 | 0.901 |
The value of the log-likelihood function at iteration 4 = -2.355840E+004
Final estimation of fixed effects:
Fixed Effect | Coefficient |Standard
error | t-ratio | Approx.
d.f. | p-value |
For INTRCPT1, β0 |
INTRCPT2, γ00 | 12.636972 | 0.244412 | 51.704 | 159 | <0.001 |

Final estimation of fixed effects
(withrobust standard errors)
Fixed Effect | Coefficient | Standard
error | t-ratio | Approx.
d.f. | p-value |
For INTRCPT1, β0 |
INTRCPT2, γ00 | 12.636972 | 0.243628 | 51.870 | 159| <0.001 |

Final estimation of variance components
Random Effect | Standard
Deviation | Variance
Component | d.f. | χ2 | p-value |
INTRCPT1, u0 | 2.93501 | 8.61431 | 159 |1660.23259 | <0.001 |
level-1, r | 6.25686 | 39.14831 | | | |
Statistics for current covariance components model
Deviance = 47116.793477
Number of estimated parameters = 2
tracking img