Urna contem 5 bolas brancas, 4 vermelhas e 3 azuis. extraem-se simultaneamente 3 bolas. achar a probabilidade de

Disponível somente no TrabalhosFeitos
  • Páginas : 6 (1301 palavras )
  • Download(s) : 0
  • Publicado : 10 de junho de 2012
Ler documento completo
Amostra do texto
Exercícios Resolvidos
1) Urna contem 5 bolas brancas, 4 vermelhas e 3 azuis. Extraem-se simultaneamente 3 bolas. Achar a probabilidade de a) Nenhuma ser vermelha b) Todas sejam da mesma cor solução a) B= {branca} V = {vermelha} A = {Azul} Nenhuma ser vermelha: {AcAcAc} P(Nenhuma ser vermelha) = P(Ac∩Ac∩Ac) = ( 8 / 12 ) x (7 / 11 ) x (6/10 ) = 0,2545 b) Todas da mesma cor: {AAA}{BBB}{VVV} P(Todasda mesma cor) = P(A∩A∩A) +P(B∩B∩B) +P(V∩V∩V) = (4/12 ) x(3/11) x (2/10)+ (5/12) x (4/11) x ( 3/10) + (3/12) x (2/11) x (1/10) = 0,0682

2) Considere o quadro a seguir, representativo da distribuição da renda anual de produtores rurais e duas cooperativas em uma determinada região:
Cooperativas A B 55 25 35 35 10 80 5 5 105 145

Renda Anual 15 a 20 20 a 25 25 a 30 30 a 35 Total

Total 80 7090 10 250

Observando os dados acima verifique a probabilidade de um cooperado aleatoriamente escolhido ser: a) da Cooperativa A A = {Coop. A} P(A) = 105/250 = 0,42 b ) ter renda entre 15 e 20 R1 = {renda entre 15 e 20} P(R1) = (55+25) / 250 = 80/250 = 0,32 c ) ter renda entre 25 e 30 dado que é da cooperativa B

R2 = {renda entre 25 e 30} B = {Coop. B} P(R2 | B ) = P ( R2 ∩ B) = 80 / 250 =80 / 145 = 0,55 P(B) 145 / 250 d) O tipo de cooperativa é independente da renda? Justifique. Os eventos são independentes se P (A∩B) = P( A ) x P( B ) Como os elementos de cada célula da tabela representa os interseções entre os eventos, devemos verificar e elas são iguais a multiplicação dos valores da ultima linha e ultima coluna. Se apenas um for diferente, já temos motivo para dizer que sãoeventos independentes. A = {Coop. A} R1 = {renda entre 15 e 20} P(A ∩ R1) = 55/250 = 0,22 P(A) x P(R1) = 0,42 x 0,32 = 0,1344 Como temos P(A ∩ R1) diferente de P(A) x P(R1), já é condição suficiente para dizer que os eventos não são independentes.

3) Jogam-se dois dados, qual é a probabilidade de o produto dos números das faces superiores estar entre 12 e 15 (inclusive?) Solução: Devemosconstruir uma tabela de produtos, que é o nosso espaço amostral (E):
Dado2 1 2 1 2 2 4 3 6 4 8 5 6

Dado1 1 2 3 4 5 6

3 3 6 9 12 10 12 15 18

4 4 8 12 16 20 24

5 5 10 15 20 25 30

6 6 12 18 24 30 36

N(E) = 36 A = {12,15} N(A) = 6 P(A) = 6/36 = 1/6 4) Admitindo que a probabilidade de uma família ter um filho do sexo masculino (H) é 0,51, calcule a probabilidade de uma família de 3 filhoster: a) Somente um filho do sexo masculino b) Dois filhos do sexo feminino

c ) pelo menos 1 do sexo feminino Solução: a) P(H) = 0,51 P(M) =0,49 1 filho do sexo masculino: {HMM , MHM, MMH} P(1 do sexo masculino) = P(H)P(M)P(M) + P(M)P(H)P(M)+P(M)P(M)P(H) = (0,51x0,49x0,49) + (0,49x0,51x0,49) + (0,49x0,49x0,51) = 0,12+0,12+0,12 = 0,36 b) P(2 do sexo masculino) = P(1 do sexo masculino) = 0,36 c)pelo menos 1 do sexo feminino: {M,H,H} {H,M,H} {H.H,M} {M,M,H} {M,H,M} {H,M,M}{M,M,M} P(pelo menos 1 do sexo feminino) = 0,49x0,51x0,51+0,51x0,49x0,51+0,51x0,51x0,49+ 0,49x0,49x0,51+0,49x0,51x0,49+0,51x0,49x0,49+0,49x0,49x0,49 = =0,127+0,127+0,127+0,122+0,122+0,122+0,118 = 0,865

5) Dois dados são lançados simultaneamente. Qual é a probabilidade de se obter a soma dos pontos igual a 8 ou doisnúmeros iguais ? O espaço amostral seria: A = {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6).....(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)} n(A) = 36 os eventos seriam: E1 : soma 8 ; {(2,6), (3,5), (4,4), (5,3), (6,2),} n(E1) = 5 --> p(E1) = 5/36 E2 : números iguais ; {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6) } n(E2) = 6 --> p(E2) = 6/36 E1∩ E2 : {(4,4)} n(E1∩ E2) = 1 -> p(E1∩ E2 ) = 1/36 Então: p(E1∪E2) = p(E1)+p(E2) – p(E1∩ E2 ) =5/36 + 1/6 - 1/36 = 5/18 6) Uma urna contem x bolas brancas e 3x bolas pretas e 3 bolas vermelhas. Uma bola é extraída ao acaso. Determine o menor valor possível de x a fim de que a probabilidade de a bola ser sorteada ser preta seja maior que 70%. Pelos dados temos que: 3x / (4x + 3) > 0,7 resolvendo temos que

0,2x > 2,1 ou seja x > 10,5 Como x deve ser inteiro logo x = 11...
tracking img