Probabilidade

Disponível somente no TrabalhosFeitos
  • Páginas : 2 (324 palavras )
  • Download(s) : 0
  • Publicado : 31 de maio de 2013
Ler documento completo
Amostra do texto
1- Uma moeda é viciada, de forma que as caras são três vezes mais prováveis de aparecer do que as coroas. Determine a probabilidade de num lançamento saircoroa.

R: Seja k a probabilidade de sair coroa. Pelo enunciado, a probabilidade de sair cara é igual a 3k. A soma destas probabilidades tem de ser igual a 1.Logo, k + 3k = 1 \ k = 1/4.
Portanto, a resposta é 1/4 = 0,25 = 25%.

2 – Um cartão é retirado aleatoriamente de um conjunto de 50 cartões numerados de 1 a 50.Determine a probabilidade do cartão retirado ser de um número primo.

R: Os números primos de 1 a 50 são: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43e 47, portanto, 15 números primos.
Temos, portanto, 15 chances de escolher um número primo num total de 50 possibilidades. Portanto, a probabilidade pedidaserá igual a p = 15/50 = 3/10.

3 – Três estudantes A, B e C estão em uma competição de natação. A e B têm as mesmas chances de vencer e, cada um, tem duas vezesmais chances de vencer do que C. Pede-se calcular a probabilidades de A ou C vencer.

R: Sejam p(A), p(B) e p(C), as probabilidades individuais de A, B, C,vencerem. Pelos dados do enunciado, temos:
p(A) = p(B) = 2.p(C).

Seja p(A) = k. Então, p(B) = k e p(C) = k/2. Temos: p(A) + p(B) + p(C) = 1.


Isto éexplicado pelo fato de que a probabilidade de .A vencer ou B vencer ou C vencer é igual a (evento certo).


Assim, substituindo, vem:


k + k + k/2 = 1 \ k =2/5. Portanto, p(A) = k = 2/5, p(B) = 2/5 e p(C) = 2/10 = 1/5.

A probabilidade de A ou C vencer será a soma dessas probabilidades, ou seja 2/5 + 1/5 = 3/5.
tracking img