Geometria análitica

Disponível somente no TrabalhosFeitos
  • Páginas : 66 (16411 palavras )
  • Download(s) : 0
  • Publicado : 28 de março de 2011
Ler documento completo
Amostra do texto
Filipe Rodrigues de S. Moreira Graduando em Engenharia Mecânica – Instituto Tecnológico de Aeronáutica (ITA) (Fevereiro 2005)

Geometria Analítica Capítulo I. Introdução
A Geometria, como ciência dedutiva, foi criada pelos gregos, mas apesar do seu brilhantismo faltava operacionabilidade. Infelizmente isto só foi conseguido mediante a Álgebra como princípio unificador. Os gregos, porém, nãoeram muito bons em álgebra. Mais do que isso, somente no século XVII a álgebra estaria razoavelmente aparelhada para uma fusão criativa com a geometria. Ocorre porém que o fato de haver condições para uma descoberta não exclui o toque de genialidade de alguém. E no caso da geometria analítica, fruto dessa fusão, o mérito não foi de uma só pessoa. Dois franceses, Pierre de Fermat (1601-1665) e RenéDescartes (1596-1650), curiosamente ambos graduados em Direito, nenhum deles matemático profissional, são os responsáveis por esse grande avanço científico: o primeiro movido basicamente por seu grande amor, a matemática e o segundo por razões filosóficas. E, digase de passagem, não trabalharam juntos: a geometria analítica é um dos muitos casos, em ciência, de descobertas simultâneas eindependentes. Se o bem-sucedido Pierre de Fermat zeloso e competente conselheiro junto ao Parlamento de Toulouse dedicava muitas de suas melhores horas de lazer à matemática, certamente não era porque faltasse outra maneira de preencher o seu tempo disponível. Na verdade Fermat simplesmente não conseguia fugir à sua verdadeira vocação e, apesar de praticar matemática como hobby, nenhum de seuscontemporâneos contribuiu tanto para o avanço desta ciência quanto ele. Além da geometria analítica, Fermat teve papel fundamental na criação do Cálculo Diferencial, do Cálculo de Probabilidades e, especialmente, da teoria dos números, ramo da matemática que estuda as propriedades dos números inteiros. A contribuição de Fermat à geometria analítica encontra-se num pequeno texto intitulado Introdução aos LugaresPlanos e Sólidos (1636 no máximo) que só foi publicado em 1679, postumamente, junto com sua obra completa. É que Fermat, bastante modesto, era avesso a publicar seus trabalhos. Disso resulta, em parte, o fato de Descartes comumente ser mais lembrado como criador da Geometria Analítica. O interesse de Descartes pela matemática surgiu cedo, no “College de la Fleche”, escola do mais alto padrão,dirigida por jesuítas, na qual ingressará aos oito anos de idade. Mas por uma razão muito especial e que já revelava seus pendores filosóficos: a certeza que as demonstrações ou justificativas matemáticas proporcionam. Aos vinte e um anos de idade, depois de freqüentar rodas matemáticas em Paris (além de outras) já graduado em Direito, ingressa voluntariamente na carreira das armas, uma das poucasopções “dignas” que se ofereciam a um jovem como ele, oriundo da nobreza menor da França. Durante os quase nove anos que serviu em vários exércitos, não se sabe de nenhuma proeza militar realizada por Descartes. É que as batalhas que ocupavam seus pensamentos e seus sonhos travavam-se no campo da ciência e da filosofia. A Geometria Analítica de Descartes apareceu em 1637 no pequeno texto chamado AGeometria como um dos três apêndices do Discurso do método, obra considerada o marco inicial da filosofia moderna. Nela, em resumo, Descartes defende o método matemático como modelo para a aquisição de conhecimentos em todos os campos. A Geometria Analítica, como é hoje, pouco se assemelha às contribuições deixadas por Fermat e Descartes. Inclusive sua marca mais característica, um par de eixosortogonais, não usada por nenhum deles. Mais, cada um a seu modo, sabia que a idéia central era associar equações a curvas e superfícies. Neste particular, Fermat foi mais feliz. Descartes superou Fermat na notação algébrica.
HYGINO H. DOMINGUES

1

Capítulo II. Introdução ao

2

e estudo do ponto.

Sejam os conjuntos B = {1, 2} e A = {3, 4} . De certo, são conjuntos finitos, de...
tracking img