Função do 1º grau

Páginas: 10 (2374 palavras) Publicado: 19 de abril de 2011
Uma função do 1º grau pode ser chamada de função afim. Pra que uma função seja considerada afim ela terá que assumir certas características, como: Toda função do 1º grau deve ser dos reais para os reais, definida pela fórmula f(x) = ax + b, sendo que a deve pertencer ao conjunto dos reais menos o zero e que b deve pertencer ao conjunto dos reais.
Então, podemos dizer que a definição de funçãodo 1º grau é:

f: R→ R definida por f(x) = ax + b, com a  R* e b  R.

Veja alguns exemplos de Função afim.

f(x) = 2x + 1 ; a = 2 e b = 1

f(x) = - 5x – 1 ; a = -5 e b = -1

f(x) = x ; a = 1 e b = 0

f(x) = - 1 x + 5 ; a = -1 e b = 5
            2                     2

Toda função a do 1º grau também terá domínio, imagem e contradomínio.

A função do 1º grau f(x) = 2x – 3pode ser representada por y = 2x – 3. Para acharmos o seu domínio e contradomínio, devemos em primeiro estipular valores para x.
Vamos dizer que x = -2 ; -1 ; 0 ; 1. Para cada valor de x teremos um valor em y, veja:

x = -2                      x = - 1                     x = 0
y = 2 . (-2) – 3       y = 2 . (-1) – 3       y = 2 . 0 - 3
y = - 4 – 3              y = -2 – 3               y= -3
y = - 7                     y = - 5

x = 1
y = 2 . 1 – 3
y = 2 – 3
y = -1

Toda função pode ser representada graficamente, e a função do 1º grau é formada por uma reta. Essa reta pode ser crescente ou decrescente, dependendo do sinal de a.

Quando a > 0

Isso significa que a será positivo. Por exemplo, dada a função: f(x) = 2x – 1 ou
y = 2x - 1, onde a = 2 e b = -1.Para construirmos seu gráfico devemos atribuir valores reais para x, para que possamos achar os valores correspondentes em y.

  x           y
- 2        - 5
- 1        - 3
0          - 1
1 / 2       0
 1           1

Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, então dizemos que quando a > 0 a função é crescente.

Com os valores de x e yformamos as coordenadas, que são pares ordenados que colocamos no plano cartesiano para formar a reta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.

Quando a < 0

Isso indica que a será negativo. Por exemplo, dada a função f(x) = - x + 1 ou
y = - x + 1, onde a = -1 e b = 1. Para construirmos seu gráfico devemos atribuir valores reaispara x, para que possamos achar os valores correspondentes em y.

  x         y
-2        3
-1        2
0         1
1         0

Podemos observar que conforme o valor de x aumenta o valor de y diminui, então dizemos que quando a < 0 a função é decrescente.

Com os valores de x e y formamos as coordenadas que são pares ordenados que colocamos no plano cartesiano para formar areta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.

Características de um gráfico de uma função do 1º grau.

• Com a > 0 o gráfico será crescente.

• Com a < 0 o gráfico será decrescente.

• O ângulo α formado com a reta e com o eixo x será agudo (menor que 90°) quando a > 0.

• O ângulo α formado com reta e com o eixo xserá obtuso (maior que 90º) quando a < 0.

• Na construção de um gráfico de uma função do 1º grau basta indicar apenas dois valores pra x, pois o gráfico é uma reta e uma reta é formada por, no mínimo, 2 pontos.

• Apenas um ponto corta o eixo x, e esse ponto é a raiz da função.

• Apenas um ponto corta o eixo y, esse ponto é o valor de b.

Função do 1º grau
Vamos iniciar o estudoda função do 1º grau, lembrando o que é uma correspondência:
Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro conjunto dado e o segundo elemento pertence ao segundo conjunto dado.
Assim: Dado os conjuntos A={1,2,3} e B={1,2,3,4,5,6} consideremos a correspondência de A em B, de tal modo que cada elemento do conjunto A se associa no conjunto B...
Ler documento completo

Por favor, assinar para o acesso.

Estes textos também podem ser interessantes

  • Função do 1º grau
  • Função de 1º grau +extras
  • função 1º e 2º grau
  • Gráfico de função do 1º grau
  • Função de 1º grau, etc..
  • matematica funçaõ de 1º grau
  • Função de 1º Grau
  • Aula de função do 1º grau

Seja um membro do Trabalhos Feitos

CADASTRE-SE AGORA!