Disponível somente no TrabalhosFeitos
  • Páginas : 48 (11755 palavras )
  • Download(s) : 0
  • Publicado : 11 de setembro de 2012
Ler documento completo
Amostra do texto
For thousands of years the spinning Earth provided a natural standard for our measurements of time. However, since 1972 we have added more than 20 “leap seconds” to our clocks to keep them synchronized to the Earth. Why are such adjustments needed? What does it take to be a good standard? (Don Mason/The
Stock Market and NASA)

c h a p t e r

Physics and Measurement

1.1 Standards of Length, Mass, and

1.5 Conversion of Units 1.6 Estimates and Order-of-Magnitude

1.2 The Building Blocks of Matter 1.3 Density 1.4 Dimensional Analysis

1.7 Significant Figures



ike all other sciences, physics is based on experimental observations and quantitative measurements. The main objective of physics is to find the limitednumber of fundamental laws that govern natural phenomena and to use them to develop theories that can predict the results of future experiments. The fundamental laws used in developing theories are expressed in the language of mathematics, the tool that provides a bridge between theory and experiment. When a discrepancy between theory and experiment arises, new theories must be formulated to remove thediscrepancy. Many times a theory is satisfactory only under limited conditions; a more general theory might be satisfactory without such limitations. For example, the laws of motion discovered by Isaac Newton (1642 – 1727) in the 17th century accurately describe the motion of bodies at normal speeds but do not apply to objects moving at speeds comparable with the speed of light. In contrast, thespecial theory of relativity developed by Albert Einstein (1879 – 1955) in the early 1900s gives the same results as Newton’s laws at low speeds but also correctly describes motion at speeds approaching the speed of light. Hence, Einstein’s is a more general theory of motion. Classical physics, which means all of the physics developed before 1900, includes the theories, concepts, laws, andexperiments in classical mechanics, thermodynamics, and electromagnetism. Important contributions to classical physics were provided by Newton, who developed classical mechanics as a systematic theory and was one of the originators of calculus as a mathematical tool. Major developments in mechanics continued in the 18th century, but the fields of thermodynamics and electricity and magnetism were notdeveloped until the latter part of the 19th century, principally because before that time the apparatus for controlled experiments was either too crude or unavailable. A new era in physics, usually referred to as modern physics, began near the end of the 19th century. Modern physics developed mainly because of the discovery that many physical phenomena could not be explained by classical physics. Thetwo most important developments in modern physics were the theories of relativity and quantum mechanics. Einstein’s theory of relativity revolutionized the traditional concepts of space, time, and energy; quantum mechanics, which applies to both the microscopic and macroscopic worlds, was originally formulated by a number of distinguished scientists to provide descriptions of physical phenomena atthe atomic level. Scientists constantly work at improving our understanding of phenomena and fundamental laws, and new discoveries are made every day. In many research areas, a great deal of overlap exists between physics, chemistry, geology, and biology, as well as engineering. Some of the most notable developments are (1) numerous space missions and the landing of astronauts on the Moon, (2)microcircuitry and high-speed computers, and (3) sophisticated imaging techniques used in scientific research and medicine. The impact such developments and discoveries have had on our society has indeed been great, and it is very likely that future discoveries and developments will be just as exciting and challenging and of great benefit to humanity.


tracking img