Equacionando problemas

Disponível somente no TrabalhosFeitos
  • Páginas : 8 (1928 palavras )
  • Download(s) : 0
  • Publicado : 17 de maio de 2011
Ler documento completo
Amostra do texto
A UA U L A L A

5

5

Equacionando os problemas
ossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar exatamente 2 palitos, de modo a transformá-la em 4 quadrados iguais, sem sobrar nenhum palito. Você pode fazer isso com palitos ou no desenho.

Introdução

N

Nossa Aula

Conseguiuresolver o quebra-cabeças? Não? Então, vamos resolvê-lo juntos, pelo caminho da matemática. Certos problemas não nos parecem, de início, “problemas de matemática” - mas, de repente, vemos que existe uma solução para eles que pode ser chamada de solução matemática. (Na realidade, o que existe na vida prática não são problemas de matemática - mas soluções matemáticas, criadas pelas pessoas pararesolver problemas práticos). O quebra-cabeça é um exemplo. A princípio, pode não estar bem claro qual matemática usar. Geometria? Aritmética? De fato, o quebra-cabeça envolve tanto figuras geométricas quanto números. Se você ainda não conseguir resolvê-lo, talvez seja porque não tenha percebido que o quebra-cabeça tem dois aspectos: o geométrico e o numérico . Talvez também tenha lhe faltadoequacionar o problema. Isto é: escolher quem será a incógnita - geralmente chamada de x - e escrever a equação satisfeita por essa incógnita. A partir daí - sempre deixando claro qual é a pergunta do problema -, basta resolver a equação: quer dizer, “encontrar o x do problema”, como se costuma dizer. Quando conseguimos equacionar um problema, vemos claramente o que é conhecido (pela equação) e o que seprocura (a incógnita). Assim, o caminho da solução, que leva de uma coisa à outra, muitas vezes salta aos olhos nesse equacionamento. Vejamos no quebra-cabeça.

Equacionando o quebra-cabeça
O que vemos na figura dada? Vemos 5 quadrados iguais. Eles estão unidos e são feitos com palitos de fósforo. O problema pede que os 5 quadrados se transformem em 4 quadrados iguais, só com o movimento de 2palitos. Que figura formarão, então, os 4 quadrados? Se soubermos isso, será bem mais fácil formar a tal figura... e o problema estará resolvido. Dois quadrados juntos podem ser formados de um dos seguintes modos: a) os quadrados não têm lado (palito) comum; ou b) os quadrados têm um lado comum. Qual a diferença importante no caso de querermos formar uma ou outra destas figuras? Pense.

A U L A5

2 quadrados c o m lado comum

2 quadrados s e m

l ado comum

A diferença é numérica: em a) precisamos de 8 palitos; já em b) precisamos a), b), de apenas 7 - pois “economizamos” um palito quando os quadrados são vizinhos, tendo um lado comum. E no nosso caso? Queremos formar 4 quadrados, sem que sobrem palitos. Qual é a pergunta crucial aqui? Pense. Isso mesmo! A pergunta é: “Quantospalitos temos?” É só contar: temos 16 palitos. Se cada quadrado possui 4 palitos e queremos formar uma figura com 4 quadrados - desde que não permitamos que dois quadrados sejam vizinhos (“de parede”, isto é, de lado comum) - usaremos: 4 ´ 4 = 16 palitos. Exatamente o que temos! Algumas tentativas irão lhe mostrar que, desenhando ou fazendo 4 quadrados com 16 palitos, o desenho que devemosprocurar formar é este:

A U L A

5

Está resolvido. Não lhe parece mais fácil, agora? Pois então. Tudo teve uma seqüência muito natural, desde o momento em que equacionamos o problema, contando o número de palitos e tentando visualizar claramente o que havia sido pedido - neste caso, a forma da figura dos 4 quadrados.

Equacionando um problema algébrico
Rigorosamente falando, equacionar umproblema envolve escrever a equação (ou as equações) de modo que ela expresse em linguagem matemática o que foi dado no problema em linguagem comum. Vejamos, então, como fazer isso com problemas algébricos, ou melhor, com problemas que admitem solução algébrica. EXEMPLO 1 Qual é o número cujo dobro, mais 5, é igual a 17? Equacione o problema, chamando o número desconhecido de x . Vimos que não...
tracking img