Conversao de bases

Disponível somente no TrabalhosFeitos
  • Páginas : 5 (1131 palavras )
  • Download(s) : 0
  • Publicado : 20 de novembro de 2012
Ler documento completo
Amostra do texto
Página 1 de 6

Nota de Aula - Conversão de bases
Profa. Patrícia Helaine L. Nascimento - e-mail: paty_landim@yahoo.com.br

Março de 2002

Principais Conversões


A transformação de uma determinada quantidade num sistema de numeração para sua representação equivalente num outro sistema recebe o nome de conversão. A partir dos sistemas vistos na nota de aula sobre sistemas de numeração(decimal, binário, octal e hexadecimal), veremos a seguir as seguintes conversões entre estes sistemas: 1. Decimal -> Outro sistema 2. Outro sistema -> Decimal 3. Hexadecimal -> Binário 4. Octal -> Binário 5. Binário -> Hexadecimal 6. Binário -> Octal 7. Hexadecimal -> Octal 8. Octal -> Hexadecimal



1. Decimal -> Outro sistema


 

Para se obter a representação de uma quantidade nosistema decimal em qualquer outro sistema, basta utilizarmos o TFN na sua forma inversa, ou seja, através de divisões sucessivas do número decimal pela base do sistema desejado. O resultado será os restos das divisões dispostos na ordem inversa. Um método simples para converter uma fração decimal para qualquer outro sistema consiste em multiplicações sucessivas da parte fracionária pela base dosistema desejado, obtendo como resultado as partes inteiras das multiplicações. O processo termina quando a parte fracionária é zero ou menor do que o erro indicado.

Exemplos: a) Decimal -> Binário (10)10 = (1010)2.

http://www.lia.ufc.br/~paty/icc/notas/4/index.html

30/03/2011

Página 2 de 6

Exemplo (fração): (0,828125)10 = ( ? )2 0,828125 x 2 = 1,65625 0,65625 x 2 = 1,3125 0,3125 x 2= 0,625 0,625 x 2 = 1,25 0,25 x 2 = 0,5 0,5 x 2 = 1 Assim temos, de cima para baixo, as partes inteiras dos resultados sendo: 110101, portanto: (0,828125)10 = ( 0,110101)2 b) Decimal -> Octal (500)10 = (764)8.

Exemplo (fração): (0,140625)10 = ( ? )8 0,140625 x 8 = 1,125 0,125 x 8 = 1 Assim temos, de cima para baixo, as partes inteiras dos resultados sendo: 11, portanto:http://www.lia.ufc.br/~paty/icc/notas/4/index.html

30/03/2011

Página 3 de 6

(0,140625)10 = (0,11)8 c) Decimal -> Hexadecimal (1000)10 = (3E8)16, pois o valor absoluto de E é 14.

Exemplo (fração): (0,06640625)10 = ( ? )16 0,06640625 x 16 = 1,0625 0,0625 x 16 = 1 Assim temos, de cima para baixo, as partes inteiras dos resultados sendo: 11, portanto: (0,06640625)10 = (0,11)16 2. Outro sistema -> Decimal
Esta conversão consiste da aplicação direta do TFN (Teorema Fundamental de Numeração), ou seja,

...+ X3 x B3 + X2 x B2 + X1 x B1 + X0 x B0 + X-1 x B-1 + X-2 x B-2 + X-3 x B-3 + ... Exemplos: a) Binário -> Decimal 101011 = 1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 32 + 0 + 8 + 0 + 2 + 1 = 43, logo: (101011)2 = (43)10 b) Octal -> Decimal 764 = 7 x 82 + 6 x 81 + 4 x 80 = 448 + 48 + 4= 500, logo: (764)8 = (500)10 c) Hexadecimal -> Decimal 3E8 = 3 x 162 + 14 x 161 + 8 x 160 = 768 + 224 + 8 = 1000, logo: (3E8)16 = (1000)10

http://www.lia.ufc.br/~paty/icc/notas/4/index.html

30/03/2011

Página 4 de 6

3. Hexadecimal -> Binário


Para converter um número hexadecimal em binário, substitui-se cada dígito hexadecimal por sua representação binária com quatro dígitos(tabela 1). A tabela a seguir mostra a equivalência entre os sistemas de numeração decimal, binário, octal e hexadecimal.



Decimal Binário Octal Hexadecimal 0 0000 0 0 1 0001 1 1 2 0010 2 2 3 0011 3 3 4 0100 4 4 5 0101 5 5 6 0110 6 6 7 0111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F Tabela 1. Equivalência entre os sistemas denumeração Exemplo: (2BC)16 = (?)2 2 = 0010, B = 1011, C = 1100 (pela tabela 1), logo: (2BC)16 = (001010111100)2 = (1010111100)2 4. Octal -> Binário


De modo muito semelhante a conversão hexadecimal -> binário, esta conversão substitui cada dígito octal por sua representação binária com três dígitos (tabela 1).

Exemplo: (1274)8 = (?)2 1 = 001, 2 = 010, 7 = 111, 4 = 100 (pela tabela 1), logo:...
tracking img