Atps matematica

Disponível somente no TrabalhosFeitos
  • Páginas : 3 (732 palavras )
  • Download(s) : 0
  • Publicado : 28 de novembro de 2011
Ler documento completo
Amostra do texto
ETAPA 3

* Aula-tema: Outras formas de integração

Esta etapa é importante para que o aluno saiba resolver vários tipos de integrais com suas respectivas peculiaridades.

Para realizá-la, éimportante seguir os passos descritos.

PASSOS

Passo 1

Leia o capítulo 7.1 do livro texto com seu grupo e relate porque a função x3x5+ 7dx não pode ser resolvida por substituição.
É fácilver que qualquer escolha de U (variável de substituição) não irá facilitar a integral. O método correto será pela regra da integral da multiplicação de duas funções (por partes).

u dv=uv-v duonde, u=x3 e v=x5+7 sai da regra da cadeia.

Em resumo, não é possível a resolução de x3x5+ 7dx pelo método da substituição por haver uma função ghx= x5+7 onde, gx=x12 e hx=x5+7.

Passo 2Se a função At=20,3e0,09t fosse definida por outra função parecida, At=20,3te0,09t2, haveria como resolvê-la por integral imediata? Se não, qual método usariam? Mostre a forma da resolução, semsubstituir os limites de integração.

Não. Usaremos o método da substituição:

abAtdt= ab20,3 t e0,09t2dt

20,3 abt e0,09t2dt

Sendo,

u=t2

dudt=2t → du=2tdt
quando:

t=a, u=a2e
t=b, u=b2

Então temos:

20,32 . a2b2e0,09udu=10,15.10,09. e0,09u

abAtdt= 10,150,09.e0.09t2

Passo 3

Leia com seu grupo o item 7.2 do livro-texto em que se trata da integração porpartes e mostre a fórmula geral da integração por partes. Podemos utilizar este tipo de integração para resolver a integral 20,3t.e0,09t dt? Justifique.

A fórmula geral da integral por partes é:u dv=uv-v du

Podemos usar este método para resolver 20,3 t. e0,09tdt, pois se usarmos o método da substituição continuaremos com uma função do tipo xeax na melhor das hipóteses, enquanto que seusarmos a integral por partes temos na segunda integral (v du) a derivada de "t" que é =1, restando apenas e0,09tdt que é de fácil resolução.

ETAPA 4

* Aula-tema: Área entre duas curvas e...
tracking img